Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A có \(cosB=\dfrac{BA}{BC}\)
=>\(\dfrac{BA}{6}=cos60=\dfrac{1}{2}\)
=>BA=3(cm)
ΔACB vuông tại A
=>\(BA^2+AC^2=BC^2\)
=>\(AC^2+3^2=6^2\)
=>\(AC^2=27\)
=>\(AC=3\sqrt{3}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(CH\cdot CB=CA^2\)
=>\(CH\cdot6=27\)
=>CH=4,5(cm)
b: Sửa đề: \(\dfrac{1}{KD\cdot KC}=\dfrac{1}{AD^2}+\dfrac{1}{AC^2}\)
Xét ΔACD vuông tại A có AK là đường cao
nên \(AK^2=KD\cdot KC\)
Xét ΔACD vuông tại A có AK là đường cao
nên \(\dfrac{1}{AK^2}=\dfrac{1}{AD^2}+\dfrac{1}{AC^2}\)
=>\(\dfrac{1}{KD\cdot KC}=\dfrac{1}{AD^2}+\dfrac{1}{AC^2}\)
c: \(\widehat{ABC}+\widehat{CBD}=180^0\)(hai góc kề bù)
=>\(\widehat{CBD}+60^0=180^0\)
=>\(\widehat{CBD}=120^0\)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}=90^0-60^0=30^0\)
Xét ΔDBC có BD=BC
nên ΔBDC cân tại B
=>\(\widehat{BDC}=\widehat{BCD}=\dfrac{180^0-\widehat{DBC}}{2}=30^0\)
Xét ΔACB vuông tại A và ΔADC vuông tại A có
\(\widehat{ACB}=\widehat{ADC}\)
Do đó:ΔACB đồng dạng với ΔADC
=>\(\dfrac{BC}{CD}=\dfrac{AC}{AD}\)
=>\(\dfrac{BC}{AC}=\dfrac{CD}{AD}\)
mà BC=BD
nên \(\dfrac{BD}{AC}=\dfrac{CD}{AD}\)
=>\(\dfrac{BD}{CD}=\dfrac{AC}{AD}=tanD\)
AB=21/(3+4)x3=9 cm
AC=21-9=12cm
Tự kẻ hình bạn nhé =)))
Áp dụng định lí Pitago vào tam giác ABC , có
AB^2+AC^2=BC^2
=>thay số vào, tính được BC=15cm
Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:
AB^2=BHxBC
=>BH=81/15=5.4cm
=>CH=15-5.4=9.6cm
AH^2=BHxCH=5.4x9.6=51.84cm
2: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(BH\cdot BC=AB^2\left(1\right)\)
Xét ΔBDC vuông tại B có BA là đường cao ứng với cạnh huyền DC
nên \(AD\cdot AC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BC=AD\cdot AC\)
a: Xét ΔABC có \(AB^2=AC^2+BC^2\)
nên ΔABC vuông tại C