Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
\(\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)
\(\frac{5}{x}=\frac{1}{6}+\frac{2y}{6}\)
\(\frac{5}{x}=\frac{1+2y}{6}\)
=> x ( 1+2y ) = 5 . 6
=> x ( 2y+1 ) = 30
=> x;2y+1 \(\in\) Ư(30)
vì 2y+1 là số lẻ nên 2y+1 \(\in\) {1;3;5;15;-1;-3;-5;-15}
Ta có bảng
2y+1 | 1 | 3 | 5 | 15 | -1 | -3 | -5 | -15 |
x | 30 | 10 | 6 | 2 | -30 | -10 | -6 | -2 |
y | 0 | 1 | 2 | 7 | -1 | -2 | -3 | -8 |
Vậy các cặp x;y tìm được là \(\hept{\begin{cases}x=30\\y=0\end{cases};\hept{\begin{cases}x=20\\y=2\end{cases}};\hept{\begin{cases}x=6\\y=2\end{cases};\hept{\begin{cases}x=2\\y=7\end{cases}};}\hept{\begin{cases}x=-30\\y=-1\end{cases};}\hept{\begin{cases}x=-10\\y=-2\end{cases};\hept{\begin{cases}x=-6\\y=-3\end{cases};\hept{\begin{cases}x=-2\\y=-8\end{cases}}}}}\)
Bài 2 , b
(3n+2) \(⋮\) n-1
=> 3(n-1) + 5 \(⋮\) n-1
Vì 3(n-1) \(⋮\) n-1 => 5 \(⋮\) n-1
hay n-1 \(\in\) Ư(5)= {1;5;-1;-5}
n \(\in\) {2;6;0;-4}
Bài 1:
a; \(\dfrac{x}{3}\) = \(\dfrac{4}{y}\)
\(xy\) = 12
12 = 22.3; Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6;12}
Lập bảng ta có:
\(x\) | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
y | -1 | -2 | -3 | -4 | -6 | -12 | 12 | 6 | 4 | 3 | 2 | 1 |
Theo bảng trên ta có các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x\)\(;y\)) =(-12; -1);(-6; -2);(-4; -3);(-2; -6);(-1; 12);(1; 12);(2;6);(3;4);(4;3);(6;2);(12;1)
b; \(\dfrac{x}{y}\) = \(\dfrac{2}{7}\)
\(x\) = \(\dfrac{2}{7}\).y
\(x\) \(\in\)z ⇔ y ⋮ 7
y = 7k;
\(x\) = 2k
Vậy \(\left\{{}\begin{matrix}x=2k\\y=7k;k\in z\end{matrix}\right.\)
\(A=\frac{1}{15}+\frac{1}{105}+...+\frac{1}{2145}\)
\(=\frac{1}{1.3.5}+\frac{1}{3.5.7}+...+\frac{1}{11.13.15}\)
\(=\frac{1}{4}\left[\frac{4}{1.3.5}+\frac{4}{3.5.7}+...+\frac{4}{11.13.15}\right]\)
\(=\frac{1}{4}.\left[\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{11.13}-\frac{1}{13.15}\right]\)
\(=\frac{1}{4}.\left[\frac{1}{1.3}-\frac{1}{13.15}\right]=\frac{1}{4}.\left[\frac{1}{3}-\frac{1}{195}\right]=\frac{16}{195}\)
\(\frac{3}{x}+\frac{y}{3}=\frac{5}{6}\Rightarrow\frac{3}{x}=\frac{5-2y}{6}\)
\(\Rightarrow x\left(5-2y\right)=18\)
Từ đó tìm được x,y
Bài 1
a)Để A thuộc Z
=>-3 chia hết 2x-1
=>2x-1 thuộc Ư(-3)={1;-1;3;-3}
=>x thuộc {1;0;-1;2}
b)Để B thuộc Z
=>4x+5 chia hết 2x-1
=>2(2x-1)+7 chia hết 2x-1
Ta thấy: 2x-1 chia hết 2x-1 =>2(2x-1) cũng chia hết 2x-1
=>7 chia hết 2x-1
=>2x-1 thuộc Ư(7)={1;-1;7;-7}
=>x thuộc {1;0;-3;4}
Bài 1
a)Để A thuộc Z
=>-3 chia hết 2x-1
=>2x-1 thuộc Ư(-3)={1;-1;3;-3}
=>x thuộc {1;0;-1;2}
b)Để B thuộc Z
=>4x+5 chia hết 2x-1
=>2(2x-1)+7 chia hết 2x-1
Ta thấy: 2x-1 chia hết 2x-1 =>2(2x-1) cũng chia hết 2x-1
=>7 chia hết 2x-1
=>2x-1 thuộc Ư(7)={1;-1;7;-7}
=>x thuộc {1;0;-3;4}
Bài 1:
a)\(\frac{x}{5}=\frac{-3}{y}\Rightarrow xy=-15\)
Vậy ta có các cặp số (x, y) thỏa mãn là: (-1; 15) (1; -15) (-3; 5) (3; -5)
b)\(\frac{-11}{x}=\frac{y}{3}\Rightarrow xy=-33\)
Vậy ta có các cặp số (x, y) thỏa mãn là: (-1; 33) (1; -33) (3; -11) (-3; 11)
Bài 2: Ở đây mình vẫn chưa hiểu về cặp số nguyên
a) Để M là số nguyên thì x + 2 chia hết cho 3. Vậy ta có các số: x \(\in\){...; -5; -2; 1; 4; 7; 10; ...}
b) Để N là số nguyên thì 7 chia hết cho x - 1 và x - 1\(\ne\)0 (hay x\(\ne\)1)
\(\Rightarrow x-1\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{2;0;8;-6\right\}\)
Vậy \(x\in\left\{2;0;8;-6\right\}\)
c) Để D là số nguyên thì x + 1 chia hết cho x - 1 và x - 1\(\ne\)0 (hay x\(\ne\)1). Đặt tính chia (bạn tự đặt do mình không cách đặt tính chia trên olm) ta có:
(x + 1) : (x - 1) = 1 (dư 2)
Để D là số nguyên thì 2 chia hết cho x - 1\(\Rightarrow x-1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
\(\Rightarrow x\in\left\{2;0;3;-1\right\}\)
Vậy \(x\in\left\{2;0;3;-1\right\}\)
\(xy-y+y=5\\ \Leftrightarrow xy=5\)
Mà x,y∈Z⇒x,y∈Ư(5)\(\Rightarrow\left(x,y\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
thanks