Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có: \(\widehat{A}=80^0\)
\(\widehat{C}=40^0\)
\(\Leftrightarrow\widehat{B}=180^0-80^0-40^0=60^0\) (Tổng ba góc của một tam giác)
Suy ra: \(\widehat{A}>\widehat{B}>\widehat{C}\)
\(\Leftrightarrow BC>AC>AB\) (Tính chất giữa góc và cạnh đối diện)
Vậy ...
Trong tam giác ABC có: \(\widehat{A}+\widehat{B}+\widehat{C}=180\Rightarrow80+45+\widehat{C}=180\Rightarrow125+\widehat{C}=180\Rightarrow\widehat{C}=55\)
Ta có: \(\widehat{A}>\widehat{B}\left(80>45\right)\Rightarrow BC>AC\)(1)
\(\widehat{A}>\widehat{C}\left(80>55\right)\Rightarrow BC>AB\) (2)
\(\widehat{C}>\widehat{B}\left(55>45\right)\Rightarrow AB>AC\) (3)
Từ (1);(2);(3) ta có: BC > AB > AC
(Mình không biết ghi kí hiệu độ nên bạn chịu khó để ý rồi thêm vào bài làm nha)
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
Tam giác ABC có ˆAA^ = 800; ˆBB^ = 450
Nên ˆCC^ = 1800 – (800 + 450) = 550
(theo định lý tổng ba góc trong tam giác)
Vì 450 < 550 < 800 hay ˆBB^ < ˆCC^ < ˆAA^ => AC < AB < BC
b: \(\widehat{C}=2\cdot\widehat{A}=2\cdot35^0=70^0\)
Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=>\(\widehat{B}=180^0-70^0-35^0=75^0\)
Xét ΔABC có \(\widehat{A}< \widehat{C}< \widehat{B}\)
mà BC,AB,AC lần lượt là các cạnh đối diện của các góc A,C,B
nên BC<AB<AC
c: Đặt \(\widehat{A}=a;\widehat{B}=c;\widehat{C}=c\)
Theo đề, ta có: \(\dfrac{a}{5}=\dfrac{b}{6}=\dfrac{c}{7};a+b+c=180\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{5}=\dfrac{b}{6}=\dfrac{c}{7}=\dfrac{a+b+c}{5+6+7}=\dfrac{180}{18}=10\)
=>\(a=10\cdot5=50;b=6\cdot10=60;c=7\cdot10=70\)
=>\(\widehat{A}=50^0;\widehat{B}=60^0;\widehat{C}=70^0\)
Xét ΔABC có \(\widehat{A}< \widehat{B}< \widehat{C}\)
mà BC,AC,AB lần lượt là các cạnh đối diện của các góc A,B,C
nên BC<AC<AB