\(\dfrac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 5 2022

Lời giải:

Để pt có 2 nghiệm thì: $\Delta=25-4(m-2)\geq 0$

$\Leftrightarrow m\leq \frac{33}{4}$

Áp dụng hệ thức Viet, với $x_1,x_2$ là 2 nghiệm của pt thì:

$x_1+x_2=-5$

$x_1x_2=m-2$

Khi đó:

$\frac{1}{x_1-1}+\frac{1}{x_2-1}=2$

$\Leftrightarrow \frac{x_1+x_2-2}{(x_1-1)(x_2-1)}=2$

$\Leftrightarrow \frac{-5-2}{(x_1-1)(x_2-1)}=2$

$\Leftrightarrow (x_1-1)(x_2-1)=\frac{-7}{2}$

$\Leftrightarrow x_1x_2-(x_1+x_2)+1=\frac{-7}{2}$

$\Leftrightarrow m-2+5+1=\frac{-7}{2}$

$\Leftrightarrow m=\frac{-15}{2}$ (tm)

AH
Akai Haruma
Giáo viên
26 tháng 5 2022

Lời giải:

Để pt có 2 nghiệm thì: $\Delta=25-4(m-2)\geq 0$

$\Leftrightarrow m\leq \frac{33}{4}$

Áp dụng hệ thức Viet, với $x_1,x_2$ là 2 nghiệm của pt thì:

$x_1+x_2=-5$

$x_1x_2=m-2$

Khi đó:

$\frac{1}{x_1-1}+\frac{1}{x_2-1}=2$

$\Leftrightarrow \frac{x_1+x_2-2}{(x_1-1)(x_2-1)}=2$

$\Leftrightarrow \frac{-5-2}{(x_1-1)(x_2-1)}=2$

$\Leftrightarrow (x_1-1)(x_2-1)=\frac{-7}{2}$

$\Leftrightarrow x_1x_2-(x_1+x_2)+1=\frac{-7}{2}$

$\Leftrightarrow m-2+5+1=\frac{-7}{2}$

$\Leftrightarrow m=\frac{-15}{2}$ (tm)

1 tháng 9 2018

a) để phương trình có 2 nghiệm : \(\Leftrightarrow\left\{{}\begin{matrix}m-3\ne0\\\Delta'\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-3\ne0\\\left(m+2\right)^2-\left(m-3\right)\left(m+1\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\6m+7\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{7}{6}\end{matrix}\right.\)

thay \(x_1=2\) vào phương trình ta có :

\(4\left(m-3\right)-4\left(m+2\right)+m+1=0\Leftrightarrow m=19\)

áp dụng hệ thức vi ét ta có : \(x_1+x_2=\dfrac{2\left(m+2\right)}{m-3}=\dfrac{2\left(21\right)}{16}=\dfrac{21}{8}\)

\(\Rightarrow x_2=\dfrac{21}{8}-x_1=\dfrac{21}{8}-2=\dfrac{5}{8}\)

vậy ....................................................................................................

b) áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+2\right)}{m-3}\\x_1x_2=\dfrac{m+1}{m-3}\end{matrix}\right.\)

ta có : \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=10\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=10\Leftrightarrow\dfrac{2\left(m+2\right)}{m-3}:\dfrac{m+1}{m-3}=10\)

\(\Leftrightarrow\dfrac{2m+4}{m+1}=10\Leftrightarrow2m+4=10m+10\Leftrightarrow m=\dfrac{-3}{4}\left(L\right)\)

vậy không có m thỏa mãn điều kiện bài toán .

1 tháng 9 2018

câu 2) a) để phương trình có 2 nghiệm cùng dấu \(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\\Delta'\ge0\\p>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\\left(m+1\right)^2-\left(m-2\right)\left(m-1\right)\ge0\\\dfrac{m-1}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\5m-1\ge0\\\left(m-1\right)\left(m-2\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m\ge\dfrac{1}{5}\\\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>2\) vậy \(m>2\)

b) áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2\left(m+1\right)}{m-2}\\x_1x_2=\dfrac{m-1}{m-2}\end{matrix}\right.\)

ta có : \(x_1^3+x_2^3=64\Leftrightarrow\left(x_1+x_2\right)^3-3\left(x_1x_2\right)\left(x_1+x_2\right)=64\)

\(\left(\dfrac{2m+2}{2-m}\right)^3+6\left(\dfrac{m-1}{m-2}\right)\left(\dfrac{m+1}{m-2}\right)=64\)

\(\Leftrightarrow\dfrac{\left(-2m-2\right)^3}{\left(m-2\right)^3}+\dfrac{6\left(m-1\right)\left(m+1\right)\left(m-2\right)}{\left(m-2\right)^3}=64\)

\(\Leftrightarrow\dfrac{-8m^3-24m^2-24m-8+6m^2-12m^3-6m+12}{m^2-6m^2+12m-8}=64\)

\(\Leftrightarrow\dfrac{-20m^3-18m^2-30m+4}{m^3-6m^2+12m-8}=64\)

\(\Leftrightarrow84m^3-402m^2+798m-516=0\)

giải nốt nha .

AH
Akai Haruma
Giáo viên
24 tháng 3 2019

Lời giải:

Để PT có 2 nghiệm phân biệt $x_1,x_2$ thì:

\(\Delta'=(m+2)^2-(m^2+m+3)>0\)

\(\Leftrightarrow 3m+1>0\Leftrightarrow m> \frac{-1}{3}\)

Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=2(m+2)\\ x_1x_2=m^2+m+3\end{matrix}\right.\)

\(x_1x_2=m^2+m+3=(m+\frac{1}{2})^2+\frac{11}{4}\neq 0, \forall m>\frac{-1}{3}\) nên $x_1,x_2\neq 0$ với mọi \(m> \frac{-1}{3}\).

Khi đó:

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=1\)

\(\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=4\)

\(\Leftrightarrow \frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=4\)

\(\Leftrightarrow \frac{(x_1+x_2)^2}{x_1x_2}=6\Rightarrow (x_1+x_2)^2=6x_1x_2\)

\(\Leftrightarrow 4(m+2)^2=6(m^2+m+3)\)

\(\Leftrightarrow 2m^2-10m+2=0\)

\(\Leftrightarrow m=\frac{5\pm \sqrt{21}}{2}\) (thỏa mãn)

20 tháng 6 2021

Đề sai nhé , sửa \(\left(x_1-2\right)^2\)thành \(\left(x_1-1\right)^2\)nhé

Để PT \(x^2+5x+m-2=0\)có 2 nghiệm phân biệt \(x_1;x_2\)ta phải có :

\(\Delta=5^2-4\left(m-2\right)=33-4m>0\Leftrightarrow m< \frac{33}{4}\)(*)

Theo định lí Viet , ta có : \(\hept{\begin{cases}x_1+x_2=-5\\x_1x_2=m-2\end{cases}}\)

Để các nghiệm \(x_1;x_2\)thỏa mãn hệ thức đã cho thì các nghiệm đó phải khác 1 , khi đó đk là :

\(1^2+5.1+m-2\ne0\Leftrightarrow m\ne-4\)(**)

Ta có : \(\frac{1}{\left(x_1-1\right)^2}+\frac{1}{\left(x_2-1\right)^2}=1\)

\(\Leftrightarrow\left(x_2-1\right)^2+\left(x_1-1\right)^2=\left(x_1-1\right)^2\left(x_2-1\right)^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2\left(x_1+x_2\right)-2x_1x_2+2=\left[x_1x_2-\left(x_1+x_2\right)+1\right]^2\)

\(\Leftrightarrow37-2\left(m-2\right)=\left(m-2+5+1\right)^2\)

\(\Leftrightarrow41-2m=\left(m+4\right)^2\)

\(\Leftrightarrow m^2+10m-25=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=-5+5\sqrt{2}\\m=-5-5\sqrt{2}\end{cases}}\)( tm * và ** )

Vậy với \(m=-5\pm5\sqrt{2}\)thì tm đề bài

25 tháng 4 2018

pt có \(\Delta\)= (4m+1)2-4.2.(m-1) = 16m2+8m+1-8m+8=16m2+9 >0

==> pt có ngiệm với mọi m

theo hthuc vi ét ta có :\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-4m-1}{2}\\x1.x2=\dfrac{m-1}{2}\end{matrix}\right.\)(1)

mà có \(\dfrac{x1^2x2+x1x2^2}{x1^2+x2^2}=2==>\dfrac{x1.x2.\left(x1+x2\right)}{\left(x1+x2\right)^2-2x1x2}=2\) (2)

thay (1) vào (2) ta đc ........

giải ra m ( bạn tự lm nhé )

thay

b: \(PT\Leftrightarrow x^2+\left(m-3\right)x-m=0\)

\(\text{Δ}=\left(m-3\right)^2+4m\)

\(=m^2-6m+9+4m\)

\(=m^2-2m+1+8=\left(m-1\right)^2+8>0\)

Do đó: PT luon có hai nghiệm phân biệt

\(\dfrac{2}{x_1}+\dfrac{2}{x_2}=\dfrac{2x_1+2x_2}{x_1x_2}=\dfrac{2\cdot\left(-m+3\right)}{-m}=\dfrac{-2m+6}{-m}\)

\(\dfrac{4x_2}{x_1}+\dfrac{4x_1}{x_2}=\dfrac{4\left(x_1^2+x_2^2\right)}{x_1x_2}\)

\(=\dfrac{4\left(x_1+x_2\right)^2-8x_1x_2}{x_1x_2}=\dfrac{4\left(-m+3\right)^2-8\cdot\left(-m\right)}{-m}\)

\(=\dfrac{4\left(m-3\right)^2+8m}{-m}\)

\(=\dfrac{4m^2-24m+36+8m}{-m}=\dfrac{4m^2-16m+36}{-m}\)

c: \(A=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}+1\)

\(=\sqrt{\left(-m+3\right)^2-4\cdot\left(-m\right)}+1\)

\(=\sqrt{m^2-6m+9+4m}+1\)

\(=\sqrt{m^2-2m+1+8}+1\)

\(=\sqrt{\left(m-1\right)^2+8}+1\ge2\sqrt{2}+1\)

Dấu '=' xảy ra khi m=1

24 tháng 5 2020

\(x^2+3x+m-3=0\)

Ta có \(\Delta=b^2-4ac\)

             \(=3^2-4.1.\left(m-3\right)\)

             \(=9-4m+12\)

             \(=21-4m\)

Đẻ pt có 2 nghiệm \(x_1;x_2\)\(\Leftrightarrow\Delta\ge0\Leftrightarrow21-4m\ge0\)

                                                  \(\Leftrightarrow x\le\frac{21}{4}\)

Áp dụng vi-ét ta có 

\(\hept{\begin{cases}x_1+x_2=-3\\x_1.x_2=m-3\end{cases}}\)

Ta có \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=5\Leftrightarrow\frac{x_1^2+x_2^2}{x_1.x_2}=5\)

                                        \(\Leftrightarrow x_1^2+x_2^2=5x_1x_2\)

                                        \(\Leftrightarrow x_1^2+x_2^2-5x_1.x_2=0\)

                                       \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-5x_1x_2=0\)

                                        \(\Leftrightarrow\left(x_1+x_2\right)^2-7x_1x_2=0\)

                                       \(\Leftrightarrow\left(-3\right)^2-7\left(m-3\right)=0\)

                                        \(\Leftrightarrow9-7m+21=0\)

                                        \(\Leftrightarrow30-7m=0\)

                                        \(\Leftrightarrow7m=30\)

                                       \(\Leftrightarrow m=\frac{30}{7}\) (TM)

Vậy \(m=\frac{30}{7}\) thì thỏa mãn bài toán 

25 tháng 5 2020

vẽ hộ cái hình

13 tháng 3 2018

a,thay m=1 vào phương trình ta được :

x2-4.1x+3.12-3=0

x2-4x=0

x(x-4)=0

x=0

x-4=0⇔x=4

phần b mình chưabiết lm ạ

14 tháng 4 2018

b) \(\Delta'=4m^2-3m^2+3=m^2+3>0\Rightarrow\) pt luôn có 2 nghiệm phân biệt

Theo hệ thức Viet ta có : \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1x_2=3m^2-3\end{matrix}\right.\)

Ta có: \(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\\ =16m^2-12m^2+12=4m^2+12\Rightarrow\left|x_1-x_2\right|=\sqrt{4m^2+12}\)

\(\left|\dfrac{x_1+x_2+4}{x_1-x_2}\right|=\left|\dfrac{4m+4}{\sqrt{4m^2+12}}\right|=\left|\dfrac{2m+2}{\sqrt{m^2+3}}\right|\)

Đặt \(y=\left|\dfrac{2m+2}{\sqrt{m^2+3}}\right|\ge0\Rightarrow y^2=\dfrac{\left(2m+2\right)^2}{m^2+3}\Rightarrow y^2m^2+3y^2=4m^2+8m+4\\ \Leftrightarrow\left(y^2-4\right)m^2-8m+3y^2-4=0\)

\(\Delta'=16-\left(3y^2-4\right)\left(y^2-4\right)\ge0\\ \Leftrightarrow-3y^4+16y^2\ge0\\ \Leftrightarrow y^2\le\dfrac{16}{3}\Leftrightarrow0\le y\le\dfrac{4\sqrt{3}}{3}\)

y đạt GTLN \(\Leftrightarrow\Delta'=0\Rightarrow m=\dfrac{4}{y^2-4}=\dfrac{4}{\dfrac{16}{3}-4}=3\)

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

 Theo đ

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

Theo đề bài thì

\(x^2_2+x^2_1\ge10\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)

Làm tiếp sẽ ra. Câu còn lại tương tự 

12 tháng 4 2018

\(\Delta'\) = (-m2)2 - m2 - 2 = m4 - m2 - 2

để pt có 2 nghiệm x1, x2 thì m4 - m2 - 2 \(\ge\) 0

=> (m2 - \(\dfrac{1}{2}\))2 - \(\dfrac{9}{4}\) \(\ge\) 0

\(\left\{{}\begin{matrix}m^2-\dfrac{1}{2}\le-\dfrac{3}{2}\\m^2-\dfrac{1}{2}\ge\dfrac{3}{2}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}m^2\le-1\left(loai\right)\\m^2\ge2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}m\ge\sqrt{2}\\m\le-\sqrt{2}\end{matrix}\right.\)

theo hệ thức Vi - ét : \(\left\{{}\begin{matrix}x_1+x_2=2m^2\\x_1.x_2=m^2+2\end{matrix}\right.\)

ta có : \(\dfrac{1}{\sqrt{2}}\)x1x2 = 3\(\sqrt{x_1+x_2}\) <=> \(\dfrac{1}{\sqrt{2}}\).(m2 + 2) - 3.\(\sqrt{2m^2}\) = 0

<=> \(\dfrac{\sqrt{2}.m^2}{2}\) + \(\sqrt{2}\) - \(3\sqrt{2}.m\) = 0

<=> m2 - 6m + 2 = 0

\(\Delta'\) = (-3)2 - 2 = 7 > 0 => pt có 2 nghiệm pb

m1 = \(\dfrac{3-\sqrt{7}}{1}\) = 3-\(\sqrt{7}\) ( loại )

m2 = 3+\(\sqrt{7}\) (TM )

vậy để pt có 2 nghiêm jthoar mãn đk trên thì m = 3+\(\sqrt{7}\)

29 tháng 4 2018

camon bn nkahihi