Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số liên tục tại mọi \(x\ne2\)
\(\lim\limits_{x\rightarrow2^-}=f\left(2\right)=2a+1\)
\(\lim\limits_{x\rightarrow2^+}\frac{2x^2-3x-2}{x-2}=\lim\limits_{x\rightarrow2^+}\frac{\left(x-2\right)\left(2x+1\right)}{x-2}=\lim\limits_{x\rightarrow2^+}\left(2x+1\right)=5\)
Để hàm số liên tục trên R
\(\Leftrightarrow2a+1=5\Rightarrow a=2\)
\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\frac{\sqrt[3]{5x+3}-2+2-\sqrt{2x+2}}{x-1}=\lim\limits_{x\rightarrow1^-}\frac{\frac{5\left(x-1\right)}{\sqrt[3]{\left(5x+3\right)^2}+2\sqrt[3]{5x+3}+4}-\frac{2\left(x-1\right)}{2+\sqrt{2x+2}}}{x-1}\)
\(=\lim\limits_{x\rightarrow1^-}\left(\frac{5}{\sqrt[3]{\left(5x+3\right)^2}+2\sqrt[3]{5x+3}+4}-\frac{2}{2+\sqrt{2x+2}}\right)=-\frac{1}{12}\)
\(\lim\limits_{x\rightarrow1^+}=\lim\limits_{x\rightarrow1^+}m.sin\left(\frac{\pi x}{2}+2019\right)=\)
Đến đây lại thêm vấn đề nữa, \(sin\left(\frac{\pi x}{2}+2019\right)\) hay \(sin\left(\frac{\pi x}{2}+2019\pi\right)\) bạn?
Bạn ghi đề sai thì phải, nhìn hàm khi \(x< 1\) thì \(\lim\limits_{x\rightarrow1^-}f\left(x\right)\) không tồn tại (ko phải dạng vô định \(\frac{0}{0}\), khi thay x=1 vào tử số ra khác 0)
Ta có:
limx→2+g(x)=limx→2+x2−x−2x−2=limx→2+(x−2)(x+1)x−2=limx→2+(x+1)=3limx→2+g(x)=limx→2+x2−x−2x−2=limx→2+(x−2)(x+1)x−2=limx→2+(x+1)=3
(1)
limx→2−g(x)=limx→2−(5−x)=3limx→2−g(x)=limx→2−(5−x)=3(2)
g(2) = 5 – 2 = 3 (3)
Từ (1), (2) và (3) suy ra: limx→2g(x)=g(2)limx→2g(x)=g(2) .
Do đó hàm số y = g(x) liên tục tại x0 = 2
_ Mặt khác trên (-∞, 2), g(x) là hàm đa thức và trên (2, +∞), g(x) là hàm số phân thức hữu tỉ xác định trên (2, +∞) nên hàm số g(x) liên tục trên hai khoảng (-∞, 2) và (2, +∞)
Vậy hàm số y = g(x) liêu tục trên R.
TenAnh1 TenAnh1 A = (-0.04, -7.12) A = (-0.04, -7.12) A = (-0.04, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) C = (-4.78, -5.6) C = (-4.78, -5.6) C = (-4.78, -5.6) D = (7.82, -7.32) D = (7.82, -7.32) D = (7.82, -7.32) E = (-4.82, -6.92) E = (-4.82, -6.92) E = (-4.82, -6.92) F = (10.54, -6.92) F = (10.54, -6.92) F = (10.54, -6.92) G = (-7.14, -8.07) G = (-7.14, -8.07) G = (-7.14, -8.07) H = (12.33, -8.07) H = (12.33, -8.07) H = (12.33, -8.07)
d/
\(f'\left(x\right)=4cos^2\frac{x}{2}-2x.2cos\frac{x}{2}.sin\frac{x}{2}=2\left(1+cosx\right)-2x.sinx\)
\(f'\left(x\right)=g\left(x\right)\)
\(\Leftrightarrow2+2cosx-2x.sinx=8cos\frac{x}{2}-3-2sinx\)
Chà, có vẻ bạn ghi ko đúng đề, pt này ko giải được.
Chắc \(g\left(x\right)=8cos\frac{x}{2}-3-2x.sinx\) mới đúng chứ nhỉ?
c/
\(f'\left(x\right)=4x.cos^2\frac{x}{2}-2x^2.cos\frac{x}{2}.sin\frac{x}{2}=2x\left(1+cosx\right)-x^2sinx\)
\(f'\left(x\right)=g\left(x\right)\)
\(\Leftrightarrow2x\left(1+cosx\right)-x^2sinx=x-x^2sinx\)
\(\Leftrightarrow2x\left(1+cosx\right)=x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2\left(1+cosx\right)=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow cosx=-\frac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
Lời giải:
Để hàm liên tục tại $x=0$ thì:
\(\lim\limits_{x\to 0+}f(x)=\lim\limits_{x\to 0-}f(x)=f(0)\)
\(\Leftrightarrow \lim\limits_{x\to 0+}\frac{\sqrt{x+1}-1}{2x}=\lim\limits_{x\to 0-}(2x^2+3mx+1)=1\)
\(\Leftrightarrow \lim\limits_{x\to 0+}\frac{1}{2(\sqrt{x+1}+1)}=0\Leftrightarrow \frac{1}{2}=0\) (vô lý)
Vậy không tồn tại $m$ thỏa mãn.
1/ \(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\left(x+1\right)=f\left(2\right)=3\)
\(\lim\limits_{x\rightarrow2^-}f\left(x\right)=\lim\limits_{x\rightarrow2^-}\dfrac{\left(x-2\right)\left(x-1\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\lim\limits_{x\rightarrow2^-}\dfrac{x-1}{x^2+2x+4}=\dfrac{1}{12}\)
\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=f\left(2\right)\ne\lim\limits_{x\rightarrow2^-}f\left(x\right)\)
=> ham so gian doan tai x=2
2/ \(\lim\limits_{x\rightarrow2^-}f\left(x\right)=f\left(2\right)=2a-1\)
\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\dfrac{3x-2-4}{\left(x-2\right)\left(\sqrt{3x-2}+2\right)}=\lim\limits_{x\rightarrow2^+}\dfrac{3}{\sqrt{3x-2}+2}=\dfrac{3}{4}\)
De ham so lien tuc tai x=2
\(\Leftrightarrow\lim\limits_{x\rightarrow2^-}f\left(x\right)=f\left(2\right)=\lim\limits_{x\rightarrow2^+}f\left(x\right)\Leftrightarrow2a-1=\dfrac{3}{4}\Leftrightarrow a=\dfrac{7}{8}\)