K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 7 2019

a/ Hàm số không chẵn không lẻ

b/\(x\in D\Rightarrow-x\in D\)

\(f\left(-x\right)=\frac{2\left(-x\right)^2}{\left(-x\right)^2-9}=\frac{2x^2}{x^2-9}=f\left(x\right)\)

Hàm số chẵn

c/ \(f\left(-x\right)=\frac{\left(-x\right)^3-5\left(-x\right)}{\left(-x\right)^2+2}=-\frac{x^3-5x}{x^2+2}=-f\left(x\right)\)

Hàm lẻ

3 tháng 3 2016

a)  miền xác định của \(f\) là \(D=R\backslash\left\{\pm1\right\}\)

\(\text{∀}x\in D\), ta có:  \(-x\in D\) và \(f\left(-x\right)=\frac{2x^4-x^2+3}{x^2-2}=f\left(x\right)\)

\(\Rightarrow\) \(f\) là hàm số chẵn 

b) Ta có: \(\left|2x+1\right|-\left|2x-1\right|\ne0\)\(\Leftrightarrow\left|2x+1\right|\ne\left|2x-1\right|\)

                                               \(\Leftrightarrow\left(2x+1\right)^2\ne\left(2x-1\right)^2\)

                                               \(\Leftrightarrow x\ne0\)

\(\Rightarrow\) Miền xác định của \(f\) là \(D=R\backslash\left\{0\right\}\)

khi đó \(\text{∀}x\in D\) thì \(-x\in D\) và :

\(f\left(-x\right)=\frac{\left|-2x+1\right|+\left|-2x-1\right|}{\left|-2x+1\right|-\left|-2x-1\right|}\)\(=\frac{\left|2x-1\right|+\left|2x+1\right|}{\left|2x-1\right|-\left|2x+1\right|}\)\(=-\frac{\left|2x+1\right|+\left|2x-1\right|}{\left|2x+1\right|-\left|2x-1\right|}\) 

          \(=-f\left(x\right)\Rightarrow f\) là hàm số lẻ 

3 tháng 3 2016

123

NV
23 tháng 9 2019

a/ ĐKXĐ: \(x\ge2\)

Miền xác định của hàm ko đối xứng nên hàm ko chẵn ko lẻ

b/ ĐKXĐ: \(-2\le x\le2\)

\(f\left(-x\right)=\sqrt{2-x}+\sqrt{2+x}=f\left(x\right)\) nên hàm chẵn

c/ ĐKXĐ: \(\left[{}\begin{matrix}-2\le x< 0\\0< x\le2\end{matrix}\right.\)

\(f\left(-x\right)=\frac{\sqrt{2-x}+\sqrt{2+x}}{-x}=-f\left(x\right)\Rightarrow\) hàm lẻ

d/ \(f\left(-x\right)=x^2-3x+1\Rightarrow\) hàm ko chẵn ko lẻ

e/ \(f\left(-x\right)=\left|-x+1\right|+\left|-x-1\right|=\left|x-1\right|+\left|x+1\right|=f\left(x\right)\Rightarrow\) hàm chẵn

f/ \(f\left(-x\right)=\left|-2x+1\right|-\left|-2x-1\right|=\left|2x-1\right|-\left|2x+1\right|=-f\left(x\right)\)

\(\Rightarrow\) Hàm lẻ

10 tháng 10 2019

undefinedundefinedundefined

6 tháng 7 2019

a) y xác định \(\Leftrightarrow2x^2-5x+2\ne0\Leftrightarrow\left(x-2\right)\left(2x-1\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x-2\ne0\\2x-1\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne\frac{1}{2}\end{matrix}\right.\). Vậy tập xác định D = R / { 2; 1/2}

b) y xác định \(\Leftrightarrow\left\{{}\begin{matrix}x-1\ne0\\2x+4\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ge-2\end{matrix}\right.\).

Vậy tập xác định D = \([-2;+\infty)/1\)

7 tháng 7 2019

y xác định \(\Leftrightarrow x^2-3x+m-1\ne0\forall x\in R\)

suy ra phương trình x2 - 3x + m - 1 = 0 vô nghiệm

\(\Rightarrow\Delta=9-4\left(m-1\right)< 0\Leftrightarrow9-4m+4< 0\Leftrightarrow m>\frac{13}{4}\)

\(\Rightarrow m\in\left(\frac{13}{4};+\infty\right)\)

NV
14 tháng 3 2020

1.

\(f\left(x\right)=\frac{x-7}{\left(x-4\right)\left(4x-3\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định tại \(x=\left\{\frac{3}{4};4\right\}\)

\(f\left(x\right)=0\Rightarrow x=7\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}\frac{3}{4}< x< 4\\x>7\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{3}{4}\\4< x< 7\end{matrix}\right.\)

2.

\(f\left(x\right)=\frac{11x+3}{-\left(x-\frac{5}{2}\right)^2-\frac{3}{4}}\)

Vậy:

\(f\left(x\right)=0\Rightarrow x=-\frac{3}{11}\)

\(f\left(x\right)>0\Rightarrow x< -\frac{3}{11}\)

\(f\left(x\right)< 0\Rightarrow x>-\frac{3}{11}\)

NV
14 tháng 3 2020

3.

\(f\left(x\right)=\frac{3x-2}{\left(x-1\right)\left(x^2-2x-2\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định khi \(x=\left\{1;1\pm\sqrt{3}\right\}\)

\(f\left(x\right)=0\Rightarrow x=\frac{2}{3}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< 1-\sqrt{3}\\\frac{2}{3}< x< 1\\x>1+\sqrt{3}\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}1-\sqrt{3}< x< \frac{2}{3}\\1< x< 1+\sqrt{3}\end{matrix}\right.\)

4.

\(f\left(x\right)=\frac{\left(x-2\right)\left(x+6\right)}{\sqrt{6}\left(x+\frac{\sqrt{6}}{4}\right)^2+\frac{8\sqrt{2}-3\sqrt{6}}{8}}\)

Vậy:

\(f\left(x\right)=0\Rightarrow x=\left\{-6;2\right\}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -6\\x>2\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow-6< x< 2\)