Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3x^3 -10x+3 =(3x-1)(x-3)
x | -vc | 1/3 | 5/4 | 3 | +vc | |||||||||
3x-1 | - | 0 | + | + | + | + | + | |||||||
x-3 | - | - | - | - | - | 0 | + | |||||||
4x-5 | - | - | - | 0 | + | + | + | |||||||
VT | - | 0 | + | 0 | - | 0 | + |
Kết luận
VT< 0 {dấu "-"} khi x <1/3 hoắc 5/4<x<3
VT>0 {dấu "+"} khi x 1/3<5/4 hoặc x> 3
VT=0 {không có dấu} khi x={1/3;5/4;3}
a)
ĐIều kiện (1)\(\Delta>0\Rightarrow\left(m+3\right)^2-4\left(m^2-1\right)\left(m^2+m\right)>0\)
ĐK(2) c/a <0 => (m^2+m)/(m^2-1) <0
Không cần giải đk (1) vì nếu (m) thủa mãn đk(2) tất nhiên thỏa mãn đk(1) do (x+3)^2 >=0
\(\dfrac{m^2+m}{m^2-1}=\dfrac{T}{M}\)
\(-1< m< 0\Rightarrow T< 0\)
\(-1< m< 1\Rightarrow M< 0\)
Để thủa mãn đk (2) cũng là giá trị m cần tìm là: \(\Rightarrow0< m< 1\)
b)
M thả mãn hệ \(\left\{{}\begin{matrix}\left(m^3+m-2\right)^2-4\left(m^2+m-5\right)\left(1\right)\\\left(m^2+m-5\right)< 0\left(2\right)\end{matrix}\right.\)
Tưng tự câu (a) Nếu (2) thủa mãn => ( 1) thỏa mãn
=> \(\left(2\right)\Rightarrow\dfrac{-1-\sqrt{21}}{2}< m< \dfrac{-1+\sqrt{21}}{2}\) cũng là giá trị m cần tìm
a/ \(x\ge-\frac{5}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+7=2x+5\\4x+7=-2x-5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)
b/ \(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-5=4x-17\\x^2-4x-5=17-4x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-8x+12=0\\x^2=22\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=6\\x=\pm\sqrt{22}\end{matrix}\right.\)
c/ \(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\2x^2-7x+5=0\end{matrix}\right.\) \(\Rightarrow x=\frac{5}{2}\)
d/ \(\left|x-1\right|+\left|2x+1\right|\ge\left|x-1+2x+1\right|=\left|3x\right|\)
Dấu "=" xảy ra khi và chỉ khi: \(\left(x-1\right)\left(2x+1\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-\frac{1}{2}\\x\ge1\end{matrix}\right.\)
Vậy nghiệm của pt là \(\left[{}\begin{matrix}x\le-\frac{1}{2}\\x\ge1\end{matrix}\right.\)
a/ \(x\ge-3\)
\(\Leftrightarrow\left(2x-1\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow3x^2-10x-8=0\Rightarrow\left[{}\begin{matrix}x=4\\x=-\frac{2}{3}\end{matrix}\right.\)
b/ \(x\ge-\frac{5}{2}\)
\(\Leftrightarrow\left(4x+7\right)^2=\left(2x+5\right)^2\)
\(\Leftrightarrow x^2+3x+2=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)
c/ \(x\ge1\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-5=5x-5\\2x^2-3x-5=5-5x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-8x=0\\2x^2+2x-10=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=4\\x=\frac{-1+\sqrt{21}}{2}\\x=\frac{-1-\sqrt{21}}{2}\left(l\right)\end{matrix}\right.\)
d/ \(x\ge\frac{17}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-5=4x-17\\x^2-4x-5=17-4x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-8x+12=0\\x^2=22\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=6\\x=2\left(l\right)\\x=\sqrt{22}\\x=-\sqrt{22}\left(l\right)\end{matrix}\right.\)
e/ \(\left[{}\begin{matrix}x\ge1\\x\le-\frac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x^2-x-2=x-2\\3x^2-x-2=2-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x^2-2x=0\\3x^2=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=\frac{2}{3}\left(l\right)\\x=\frac{2\sqrt{3}}{3}\\x=\frac{-2\sqrt{3}}{3}\end{matrix}\right.\)
a)
Làm từng cái
(1)để có hai nghiệm: \(m^2+m+1\ne0\) ta có
\(m^2+m+1=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall m\)đúng với \(\forall m\)
(2) \(\Delta>0\Rightarrow\left(2m-3\right)^2-4\left(m-5\right)\left(m^2+m+1\right)>0\)
{để đó tý giải quyết sau }
(3) tích hai nghiệm phải dương
\(\Rightarrow x_1x_2=\dfrac{c}{a}>0\Rightarrow m-5>0\Rightarrow m>5\)
(4) tổng hai nghiệm phải dương
\(\Rightarrow-\dfrac{b}{a}>0\Rightarrow2m-3< 0\Rightarrow m< \dfrac{3}{2}\)
từ (3) (4) => không có m thỏa mãn => kết luận vô nghiệm
câu b)
có vẻ nhàn hơn
(1) \(\Delta'>0\Rightarrow9m^2-9m^2+2m-2=2m-2>0\Rightarrow m>1\)
(2)\(-\dfrac{b}{a}>0\Rightarrow m>0\)
(3) \(\dfrac{c}{a}>0\Rightarrow9m^2-2m+2>0\) đúng vơi mọi m
(1)(2)(3) nghiệm là: m>1
a: =>|x+3|=|2x-1|
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x+3\\2x-1=-x-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\3x=-2\end{matrix}\right.\Leftrightarrow x\in\left\{4;-\dfrac{2}{3}\right\}\)
b: \(\left|x^2-2x\right|=\left|2x^2-x-2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-x-2=x^2-2x\\2x^2-x-2=-x^2+2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\3x^2+x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+2\right)\left(x-1\right)=0\\\left(x+1\right)\left(3x-2\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{-2;1;-1;\dfrac{2}{3}\right\}\)
c: \(\left|3x^2-2x\right|=\left|6-x^2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3x^2-2x=6-x^2\\3x^2-2x=x^2-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x^2-2x-6=0\\2x^2-2x+6=0\end{matrix}\right.\)
\(\Leftrightarrow2x^2-x-3=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x+1\right)=0\)
=>x=3/2 hoặc x=-1
d: \(\left|2x^2-3x-5\right|=\left|x^2-4x-5\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-5=x^2-4x-5\\2x^2-3x-5=4x+5-x^2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+x=0\\3x^2-7x-10=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\left(x+1\right)=0\\3x^2-10x+3x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\left(x+1\right)=0\\\left(3x-10\right)\left(x+1\right)=0\end{matrix}\right.\)
hay \(x\in\left\{\dfrac{10}{3};-1\right\}\)
e: |5x+1|=|2x-3|
\(\Leftrightarrow\left[{}\begin{matrix}5x+1=2x-3\\5x+1=-2x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-4\\7x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=\dfrac{2}{7}\end{matrix}\right.\)