Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(15-\sqrt{216}=15-\sqrt{4}.\sqrt{54}\)=\(9-2.\sqrt{9}.\sqrt{6}+6\)=\(\left(\sqrt{9}-\sqrt{6}\right)^2=\left(3-\sqrt{6}\right)^2\)
2)\(20-\sqrt{76}=20-\sqrt{4}.\sqrt{19}=19-2\sqrt{19}.1+1=\left(\sqrt{19}-1\right)^2\)
3)\(24-12\sqrt{3}=6\left(4-2\sqrt{3}\right)=6\left(3-2.\sqrt{3}.1+1\right)=6\left(\sqrt{3}-1\right)^2\)
4)\(7-\sqrt{13}=\frac{14-2\sqrt{13}}{2}=\frac{13-2\sqrt{13}.1+1}{2}=\frac{\left(\sqrt{13}-1\right)^2}{2}\)
5)\(16-\sqrt{31}=\frac{32-2\sqrt{31}}{2}=\frac{31-2\sqrt{31}.1+1}{2}=\frac{\left(\sqrt{31}-1\right)^2}{2}\)
\(13-4\sqrt{3}=\left(2\sqrt{3}\right)^2-2.2\sqrt{2}.1+1^2=\left(2\sqrt{3}-1\right)^2\)
a) \(\left(\sqrt{5}+\sqrt{3}\right)\sqrt{8-2\sqrt{15}}=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=5-3=2\)
câu này \(\sqrt{15}\)đúng hơn \(\sqrt{5}\)
b) \(\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}=\frac{\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{5}-1-\sqrt{5}-1}{\sqrt{2}}=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)c) \(\sqrt{5-2\sqrt{6}}-\sqrt{5+2\sqrt{6}}=\sqrt{3}-\sqrt{2}-\sqrt{3}-\sqrt{2}=-2\sqrt{2}\)
1) \(5-2\sqrt{6}=\left(\sqrt{3}\right)^2-2\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2=\left(\sqrt{3}-\sqrt{2}\right)^2\)
2) \(8+2\sqrt{15}=\left(\sqrt{5}\right)^2+2\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2=\left(\sqrt{5}+\sqrt{3}\right)^2\)
3) \(10-2\sqrt{21}=\left(\sqrt{7}\right)^2-2\sqrt{7}.\sqrt{3}+\left(\sqrt{3}\right)^2=\left(\sqrt{7}-\sqrt{3}\right)^2\)
4) \(21+6\sqrt{6}=\left(\sqrt{18}\right)^2+2.\sqrt{18}.\sqrt{3}+\left(\sqrt{3}\right)^2=\left(\sqrt{18}+\sqrt{3}\right)^2\)
5) \(14+8\sqrt{3}=\left(\sqrt{8}\right)^2+2.\sqrt{8}.\sqrt{6}+\left(\sqrt{6}\right)^2=\left(\sqrt{8}+\sqrt{6}\right)^2\)
6) \(36-12\sqrt{5}=\left(\sqrt{30}\right)^2-2.\sqrt{30}.\sqrt{6}+\left(\sqrt{6}\right)^2=\left(\sqrt{30}-\sqrt{6}\right)^2\)
7) \(25+4\sqrt{6}=\left(\sqrt{24}\right)^2+2\sqrt{24}.1+1^2=\left(\sqrt{24}+1\right)^2\)
8) \(98-16\sqrt{3}=\left(\sqrt{96}\right)^2-2\sqrt{96}.\sqrt{2}+\left(\sqrt{2}\right)^2=\left(\sqrt{96}-\sqrt{2}\right)^2\)
b) \(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}=\sqrt{4+5}=3\)
a) \(21-8\sqrt{5}=16-2\times4\times\sqrt{5}+5=\left(4-\sqrt{5}\right)^2\)
b) \(47-12\sqrt{11}=36-2\times6\times\sqrt{11}+11=\left(6-\sqrt{11}\right)^2\)
c) \(13-4\sqrt{3}=12-2\times1\times\sqrt{3}+1=\left(2\sqrt{3}-1\right)^2\)
d) \(43+30\sqrt{2}=25+2\times5\times3\sqrt{2}+18=\left(5+3\sqrt{2}\right)^2\)
e) \(41+24\sqrt{2}=9+2\times3\times4\sqrt{2}+32=\left(3+4\sqrt{2}\right)^2\)
g) \(29-12\sqrt{5}=9+2\times3\times2\sqrt{5}+20=\left(3+2\sqrt{5}\right)^2\)
h) \(49-8\sqrt{3}=48-2\times4\sqrt{3}\times1+1=\left(4\sqrt{3}-1\right)^2\)
i) \(37-12\sqrt{7}=28-2\times3\times2\sqrt{7}+9=\left(2\sqrt{7}-3\right)^2\)
Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)
\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)
\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)
\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)
Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình
a: \(=-6\sqrt{b}-\dfrac{1}{3}\cdot3\sqrt{3b}+\dfrac{1}{5}\cdot5\sqrt{6b}\)
\(=-6\sqrt{b}-\sqrt{3}\cdot\sqrt{b}+\sqrt{6}\cdot\sqrt{b}\)
\(=\sqrt{b}\left(-6-\sqrt{3}+\sqrt{6}\right)\)
c: \(=\sqrt{\left(5+2\sqrt{6}\right)^2}+\sqrt{\left(5-2\sqrt{6}\right)^2}\)
\(=5+2\sqrt{6}+5-2\sqrt{6}=10\)
d: \(A=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)
e: \(B=\sqrt{6+2\sqrt{5-2\sqrt{3}-1}}\)
\(=\sqrt{6+2\cdot\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
b: \(5+2\sqrt{6}=\left(\sqrt{3}+\sqrt{2}\right)^2\)
c: \(13+\sqrt{48}=13+4\sqrt{3}=\left(2\sqrt{3}+1\right)^2\)
d: \(4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)