K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

bạn thử kiểm tra lại đề xem có fải sai đề k

19 tháng 12 2015

\(AB^2=\left(1+1\right)^2+\left(2-0\right)^2=8\)

\(AC^2=\left(5+1\right)^2+\left(-2-0\right)^2=39\)

\(BC^2=\left(5-1\right)^2+\left(-2-2\right)^2=32\)

Cạnh lớn nhất là AC, ta có:

AC2 < AB2 + BC2

=> Tam giác ABC nhọn

A B 5 1 2 -2 C D E F

Diện tích ABC= dt(CDEF) - dt(CDB) - dt(CFA) - dt(ABE) 

                     = 5.4 - 4.4/2 - 5.1/2 - 3.1/2

                      = 8

Gọi H(x,y), ta có BH vuông góc với AC => \(\overrightarrow{BH}.\overrightarrow{AC}=0\) => (x - 1).(5-0) + (y - 2)(-2 +1) = 0

=> 5x - y = 3    (1)

Phương trình đt AC là: \(\frac{y+1}{-2+1}=\frac{x-0}{5-0}\) => 5y + x = -5

Vì H thuộc AC nên  5y + x = -5    (2)

Từ (1) và (2), giải hệ pt ta có: x =5/13 và y = -14/13

Vậy H(5/13; -14/13)

23 tháng 12 2015

AB2=(1+1)2+(20)2=8

AC2=(5+1)2+(20)2=39

BC2=(51)2+(22)2=32

Cạnh lớn nhất là AC, ta có:

AC2 < AB2 + BC2

=> Tam giác ABC nhọn

AB512-2CDEF

Diện tích ABC= dt(CDEF) - dt(CDB) - dt(CFA) - dt(ABE) 

                     = 5.4 - 4.4/2 - 5.1/2 - 3.1/2

                      = 8

Gọi H(x,y), ta có BH vuông góc với AC => BH.AC=0 => (x - 1).(5-0) + (y - 2)(-2 +1) = 0

=> 5x - y = 3    (1)

Phương trình đt AC là: y+12+1=x050 => 5y + x = -5

Vì H thuộc AC nên  5y + x = -5    (2)

Từ (1) và (2), giải hệ pt ta có: x =5/13 và y = -14/13

Vậy H(5/13; -14/13)

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0
20 tháng 12 2021

1, Gọi tọa độ điểm D(x;y)

Ta có:\(\overrightarrow{AB}\left(8;1\right)\)

\(\overrightarrow{DC}\left(1-x;5-y\right)\)

Tứ giác ABCD là hình bình hành khi

\(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Leftrightarrow1-x=8;5-y=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=4\end{matrix}\right.\)

Vậy tọa độ điểm D(-7;4)

20 tháng 12 2021

câu 2 tương tự như câu 1 nha bạn