Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Gọi số đề bài cho là aab (a khác 0; a;b là các chữ số)
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 mà aab chia hết cho 3 nên a + a + b = 2a + b chia hết cho 3 (1)
Vì aab chia hết cho 4 nên ab = 8a + 2a + b chia hết cho 4
Mà 8a chia hết cho 4 nên 2a + b chia hết cho 4 (2)
Từ (1) và (2), do (3;4)=1 nên 2a + b chia hết cho 12
=> đpcm
3) Do (7;3)=1 nên (7n;3)=1
=> 7n chia 3 dư 1 hoặc 2
+ Nếu 7n chia 3 dư 1 thì 7n - 1 chia hết cho 3
=> (7n + 1)(7n - 1) chia hết cho 3
+ Nếu 7n chia 3 dư 2 thì 7n + 1 chia hết cho 3
=> (7n + 1)(7n - 1) chia hết cho 3
Vậy ta có đpcm
Bài 1:
\(\Leftrightarrow n^2+5n+6+3⋮n+3\)
\(\Leftrightarrow n+3\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{-2;-4;0;-6\right\}\)
Bài 2:
A=n(n+1)+1
Vì n;n+1 là hai số nguyên liên tiếp
nên n(n+1) chia hết cho 2
=>n(n+1)+1 không chia hết cho 2
hay A không chia hết cho 8
Từ 137 đến 578 có:
\(\left(578-137\right)\div3+1=148\) số chia hết cho 3.
\(\left(578-137\right)\div9+1=50\) số chia hết cho 9.
\(8^{2016}-8^{2014}=8^{2014}\left(8^2-1\right)=8^{2014}\times\left(64-1\right)=8^{2014}\times63=8^{2014}\times7\times9⋮9\)
Giúp mk làm bài 2 luôn đi Phương An