Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(6xy\cdot\sqrt{\frac{9x^2}{16y^2}}=6xy\cdot\frac{3x}{4y}=\frac{18x^2y}{4y}=\frac{9}{2}x^2\)
\(\sqrt{\frac{4+20a+25a^2}{b^4}}=\sqrt{\frac{\left(2+5a\right)^2}{\left(b^2\right)^2}}=\frac{2+5a}{b^2}\)
\(\left(m-n\right).\sqrt{\frac{m-n}{\left(m-n\right)^2}}=\sqrt{\left(m-n\right)^2}\cdot\sqrt{\frac{1}{m-n}}=\sqrt{\frac{\left(m-n\right)^2}{m-n}}=\sqrt{m-n}\)
Bài 2 :
1. \(\left(2\sqrt{3}-\sqrt{12}\right):5\sqrt{3}=\left(2\sqrt{3}-2\sqrt{3}\right):5\sqrt{3}=0:5\sqrt{3}=0\)
2. \(\sqrt{\frac{317^2-302^2}{1013^2-1012^2}}=\frac{\sqrt{\left(317+302\right)\left(317-302\right)}}{\sqrt{\left(1013+1012\right)\left(1013-1012\right)}}=\frac{\sqrt{619}\cdot\sqrt{15}}{\sqrt{2025}}=\sqrt{\frac{619}{135}}\)(check lại)
3. \(\sqrt{27\left(1-\sqrt{3}\right)^2}:3\sqrt{75}\)
\(=\sqrt{27}\left(1-\sqrt{3}\right):15\sqrt{3}\)
\(=3\sqrt{3}\left(1-\sqrt{3}\right):15\sqrt{3}\)
\(=\frac{1-\sqrt{3}}{5}\)
4.\(\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}}+\sqrt{5}\right):2\sqrt{5}\)
\(=\left(\frac{5}{\sqrt{5}}+\frac{\sqrt{20}}{2}-\frac{\frac{5}{4}\cdot2}{\sqrt{5}}+\sqrt{5}\right):2\sqrt{5}\)
\(=\left(\sqrt{5}+\frac{2\sqrt{5}}{2}-\frac{\frac{5}{2}}{\sqrt{5}}+\sqrt{5}\right):2\sqrt{5}\)
\(=\left(\sqrt{5}+\sqrt{5}+\frac{\sqrt{5}}{2}+\sqrt{5}\right):2\sqrt{5}\)
\(=\frac{7}{2}\sqrt{5}:2\sqrt{5}\)
\(=\frac{7}{4}\)
a) \(\left(\sqrt{8}+\sqrt{72}-\sqrt{2}\right).\sqrt{2}\)
\(=\left(2\sqrt{2}+6\sqrt{2}-\sqrt{2}\right).\sqrt{2}\)
\(=7\sqrt{2}.\sqrt{2}=7.2=14\)
b) \(\left(\sqrt{5}+\sqrt{2}+1\right)\left(\sqrt{5}-1\right)\)
\(=5-\sqrt{5}+\sqrt{10}-\sqrt{2}+\sqrt{5}-1\)
\(=4+\sqrt{10}-\sqrt{2}\)
c) \(\left(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\right)^2\)
\(=\left(\sqrt{4+\sqrt{7}}\right)^2-2\sqrt{4+\sqrt{7}}\sqrt{4-\sqrt{7}}+\left(\sqrt{4-\sqrt{7}}\right)^2\)
\(=\left(4+\sqrt{7}\right)-6+\left(4-\sqrt{7}\right)\)
\(=4+\sqrt{7}-6+4-\sqrt{7}=2\)
d) \(\left(\sqrt{2}+1+\sqrt{3}\right).\left(\sqrt{2}+1-\sqrt{3}\right)\)
\(=\left(\sqrt{2}+1\right)^2-3=2+2\sqrt{2}+1-3=2\sqrt{2}\)
e) \(\left(\sqrt{\frac{9}{2}}+\sqrt{\frac{1}{2}}-\sqrt{2}\right).\sqrt{2}\)
\(=3+1-2=2\)(nhân vào)
f) \(\left(5\sqrt{3}+3\sqrt{5}\right):\sqrt{15}\)
\(=\left(\sqrt{75}+\sqrt{45}\right):\sqrt{15}=\sqrt{5}+\sqrt{3}\)(chia đa tức cho đơn thức)
có sai xót mong m.n bỏ qa cho ♥
\(a,\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}=2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}\)
\(=-13\sqrt{3}\)
\(b,2\sqrt{3}.\left(\sqrt{27}+2\sqrt{48}-\sqrt{75}\right)=2\sqrt{3}\left(3\sqrt{3}+8\sqrt{3}-5\sqrt{3}\right)\)
\(=2\sqrt{3}.6\sqrt{3}=36\)
\(c,\left(2\sqrt{2}-\sqrt{3}\right)^2=8-4\sqrt{6}+3\)
\(=11-4\sqrt{6}\)
\(d,\left(1+\sqrt{3}-\sqrt{2}\right)\left(1+\sqrt{3}+\sqrt{2}\right)=1+2\sqrt{3}+3-2\)
\(=2+2\sqrt{3}\)
a) Ta có: \(\left(\sqrt{6}+\sqrt{2}\right)\cdot\left(\sqrt{3}-2\right)\cdot\left(\sqrt{2+\sqrt{3}}\right)\)
\(=\sqrt{2}\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\cdot\sqrt{2+\sqrt{3}}\)
\(=\sqrt{4+2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)
\(=\sqrt{3+2\cdot\sqrt{3}\cdot1+1}\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)
\(=\left|\sqrt{3}+1\right|\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)
\(=\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)(Vì \(\sqrt{3}>1>0\))
\(=\left(4+2\sqrt{3}\right)\cdot\left(\sqrt{3}-2\right)\)
\(=2\cdot\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)\)
\(=2\cdot\left(3-4\right)\)
\(=-2\)
b) Ta có: \(\sqrt{2}\cdot\left(\sqrt{2-\sqrt{3}}\right)\cdot\left(\sqrt{3}+1\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\cdot\left(\sqrt{3}+1\right)\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\cdot\left(\sqrt{3}+1\right)\)
\(=\left|\sqrt{3}-1\right|\cdot\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)(Vì \(\sqrt{3}>1\))
\(=3-1=2\)
c) Ta có: \(\left(\sqrt{10}-\sqrt{6}\right)\cdot\left(\sqrt{4-\sqrt{15}}\right)\)
\(=\sqrt{2}\cdot\sqrt{4-\sqrt{15}}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{8-2\sqrt{15}}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left|\sqrt{5}-\sqrt{3}\right|\cdot\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)(Vì \(\sqrt{5}>\sqrt{3}\))
\(=8-2\sqrt{15}\)
d) Ta có: \(\left(\sqrt{3}-\sqrt{12}\right)\cdot\left(\sqrt{5+2\sqrt{6}}\right)\)
\(=\sqrt{3}\cdot\left(1-2\right)\cdot\sqrt{3+2\cdot\sqrt{3}\cdot\sqrt{2}+2}\)
\(=-\sqrt{3}\cdot\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=-\sqrt{3}\cdot\left|\sqrt{3}+\sqrt{2}\right|\)
\(=-\sqrt{3}\cdot\left(\sqrt{3}+\sqrt{2}\right)\)(Vì \(\sqrt{3}>\sqrt{2}>0\))
\(=-3-\sqrt{6}\)
e) Ta có: \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}-\sqrt{2}\right)\cdot\left(2+\sqrt{3}\right)\)
\(=\sqrt{2}\cdot\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\cdot\left(2+\sqrt{3}\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+2\right)\)
\(=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\cdot\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+2\right)\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\cdot\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+2\right)\)
\(=\left|\sqrt{3}-1\right|\cdot\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+2\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)\left(\sqrt{3}+2\right)\)(Vì \(\sqrt{3}>1\))
\(=\frac{\left(4-2\sqrt{3}\right)\left(4+2\sqrt{3}\right)}{2}\)
\(=\frac{16-12}{2}=\frac{4}{2}=2\)
f) Ta có: \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{4+2\cdot2\cdot\sqrt{3}+3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left|2+\sqrt{3}\right|}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)(Vì \(2>\sqrt{3}>0\))
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{25-2\cdot5\cdot\sqrt{3}+3}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left|5-\sqrt{3}\right|}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}\)(Vì \(5>\sqrt{3}\))
\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+\sqrt{25}}\)
\(=\sqrt{4+5}=\sqrt{9}=3\)
1)
a)\(\left(\sqrt{x}-\sqrt{y}\right).\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}\right)^2-\left(\sqrt{y}\right)^2=x-y\)
b)\(\left(\sqrt{x}-3\right).\left(\sqrt{x}+2\right)=\left(\sqrt{x}\right)^2+2\sqrt{x}-3\sqrt{x}-6=x-\sqrt{x}-6\)
c)\(\sqrt{\left(2-\sqrt{5}\right)^2.\left(2+\sqrt{5}\right)^2}=\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)=4-\left(\sqrt{5}\right)^2\)
=\(4-5=1\)
d)\(\sqrt{\left(-5\right)^2.3^2}=\left(5\right).3=15\)
e)\(\sqrt{\frac{5}{27}.\frac{8}{20}}=\sqrt{\frac{2}{27}}\)
ĐÂy này nhớ **** vài câu nha
a, \(\left(\sqrt{14}+\sqrt{6}\right)\sqrt{5-\sqrt{21}}=\left(\sqrt{7}+\sqrt{3}\right)\sqrt{2}\sqrt{5-\sqrt{21}}\)
\(=\left(\sqrt{7}+\sqrt{3}\right)\sqrt{10-2\sqrt{21}}=\left(\sqrt{7}+\sqrt{3}\right)\sqrt{7-2.\sqrt{3}.\sqrt{7}+3}\)
\(=\left(\sqrt{7}+\sqrt{3}\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)=7-3=4\)