\(S=\frac{3}{2\cdot3}+\frac{3}{3\cdot6}+\frac{3}{4\cdot9}+...+\frac{3}{6039\cd...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

câu 2: \(S=\frac{25^{28^{ }}+25^{24}+...+25^2+25^2+1}{25^{28}.25^2+25^{24}.25^4+...+25^2+1}\)

         rút gọn ta được

          \(S=\frac{1}{25^4+1}\)

          

6 tháng 5 2017

Ta có : \(S=\frac{3}{2\cdot3}+\frac{3}{3\cdot6}+\frac{3}{4\cdot9}+...+\frac{3}{6039\cdot2014}\)

\(S=3\cdot\left(\frac{3}{6\cdot3}+\frac{3}{9\cdot6}+\frac{3}{12\cdot9}+...+\frac{3}{6039\cdot6042}\right)\)

\(S=3\cdot\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{6039}-\frac{1}{6042}\right)\)

\(S=3\cdot\left(\frac{1}{3}-\frac{1}{6042}\right)\)

\(S=3\cdot\frac{671}{2014}\)

\(S=\frac{2013}{2014}\)

6 tháng 5 2017

\(S=\frac{3}{2.3}+\frac{3}{3.6}+...+\frac{3}{2014.6039}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2013.2014}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2013}-\frac{1}{2014}\)

\(=1-\frac{1}{2014}=\frac{2013}{2014}\)

31 tháng 1 2016

kết bạn và gửi lời nhắn :

mình sẽ làm video hướng dẫn cho bạn

25 tháng 7 2015

Đặt phân số trên là A

\(A=\frac{25^{28}+25^{24}+...+25^4+25^0}{\left(25^{28}+25^{24}+...+25^4+25^0\right)+\left(25^{30}+25^{26}+...+25^6+25^2\right)}\)

\(\frac{1}{A}=\frac{\left(25^{28}+25^{24}+...+25^4+25^0\right)+\left(25^{30}+25^{26}+...+25^6+25^2\right)}{25^{28}+25^{24}+...+25^4+25^0}\)

\(\frac{1}{A}=1+\frac{25^{30}+25^{26}+...+25^6+25^2}{25^{28}+25^{24}+...+25^4+25^0}\)

Đặt \(B=\frac{25^{30}+25^{26}+...+25^6+25^2}{25^{28}+25^{24}+...+25^4+25^0}\)

\(\frac{B}{25^2}=\frac{25^{30}+25^{26}+...+25^6+25^2}{25^{30}+25^{26}+...+25^6+25^2}=1\Rightarrow B=25^2\)

=> \(\frac{1}{A}=1+B=1+25^2\Rightarrow A=\frac{1}{1+25^2}\)
 

25 tháng 7 2015

rễ như trễ bàn tay mà cũng hỏi

2 tháng 3 2016

\(A=\frac{25^{28}+25^{24}+25^{20}+...+25^4+1}{25^{30}+25^{28}+25^{26}+...+25^2+1}=25^{30}+25^{26}+25^{22}+25^{18}+25^{14}+25^{10}+25^6+25^2\)