Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: tìm x thuộc tập hợp N, biết
A) 6x +4x=2010
6 * x + 4 * x = 2010
(6 + 4) * x = 2010
10 * x = 2010
x= 2010 : 10
x= 201
B) (x-10) ×11=0
\(\Rightarrow\)x - 10 = 0
x = 0 + 10
x = 10
Bài 2: tìm x,y thuộc N, biết
A) x×y-2x=0
\(\Rightarrow x\)= 0
B) (x-4)×(x-3)=0
\(\Rightarrow\)x - 4 = 0
x = 0 + 4
x = 4
Bài 3: tính tổng
A) S=1+2+...+2000
Số các số hạng: (2000 - 1) : 1 + 1= 2000 (số)
Tổng: (2000 + 1) * 2000 : 2 = 2 001 000
B) S= 2+4+...+2010
Số các số hạng: (2010 - 2) : 2 +1= 1005 (số)
Tổng: (2010 + 2) * 1005 : 2 = 1 011 030
C) S=1+3+...+2011
Số các số hạng; (2011 - 1) : 2 +1 = 1006 (số)
Tổng: (2011 +1) * 1006 : 2 = 1 012 036
D) 5+10+15+...+2015
Số các số hạng: (2015 - 5) : 5 + 1 = 403 (số)
Tổng: (2015 + 5) * 403 :2 = 407 030
E) 3+6+...+2010
Số các số hạng: (2010 - 3) : 3 +1 = 670 (số)
Tổng: (2010 + 3) * 670 : 2 = 674 355
G)4+8+12+...+2012
Số các số hạng: (2012 - 4) : 4 + 1 = 503 (số)
Tổng: (2012 + 4) * 503 : 2 = 507 024
S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... + 2018 – 2019 - 2020 + 2021 + 2022
S = (1 + 2 - 3 - 4) + ... + (2017 + 2018 – 2019 - 2020) + 2021 + 2022
S = (-4) + ... + (-4) + 2021 + 2022
2020 : 4 = 505
S = (-4) . 505 + 2021 + 2022
S = (-2020) + 2021 + 2022
S = 2023
S=1+2-3-4+5+6-7-8+9+.....+2018-2019-2020+2021+2022
S=[1+2-3-4]+[5+6-7-8]+....+[2017+2018-2019-2020]+2021+2022
S=-4+[-4]+....+[-4]+4043
S=-4. 531+4043
S=-2124+4043
S= 1919
NHỚ THEO DÕI MÌNH NHA
A = \(\dfrac{2020}{2021}\) + \(\dfrac{2021}{2022}\) ; B = \(\dfrac{2020+2021}{2021+2022}\)
B = \(\dfrac{2020+2021}{2021+2022}\) = \(\dfrac{2020}{2021+2022}\) + \(\dfrac{2021}{2021+2022}\)
\(\dfrac{2020}{2021}\) > \(\dfrac{2020}{2021+2022}\)
\(\dfrac{2021}{2022}\) > \(\dfrac{2021}{2021+2022}\)
Cộng vế với vế ta có:
A = \(\dfrac{2020}{2021}\) + \(\dfrac{2021}{2022}\) > \(\dfrac{2020}{2021+2022}\) + \(\dfrac{2021}{2021+2022}\) = B
Vậy A > B
A = \(\dfrac{10^{10}-1}{10^{11}-1}\)
A \(\times\) 10 = \(\dfrac{(10^{10}-1)\times10}{10^{11}-1}\) = \(\dfrac{10^{11}-10}{10^{11}-1}\) = 1 - \(\dfrac{9}{10^{11}-1}\) < 1
B = \(\dfrac{10^{10}+1}{10^{11}+1}\)
B \(\times\) 10 = \(\dfrac{(10^{10}+1)\times10}{10^{11}+1}\) = \(\dfrac{10^{11}+10}{10^{11}+1}\) = 1 + \(\dfrac{9}{10^{11}+1}\) > 1
Vì 10 A< 1< 10B
Vậy A < B
a) S = 1 + 3 + 5 + … + 2015 + 2017
=> S = ( 2017 + 1 ) . 1009 : 2
=> S = 1 018 081
b) 7 + 11 + 15 + 19 + … + 51 + 55
=> S = ( 55 + 7 ) . 13 : 2
=> S = 403
c) S = 2 + 4 + 6 + ...2016+ 2018
=> S = ( 2018 + 2 ) . 1009 : 2
=> S = 1 019 090
a, S = 1 + 3 + 5 + ... + 2015 + 2017 ( cách đều 2 đơn vị )
S có số số hạng là :
( 2017 - 1 ) : 2 + 1 = 1009 ( số )
=> S = ( 1 + 2017 ) . 1009 : 2 = 1018081
b) S = 7 + 11 + 15 + 19 + ... + 51 + 55 ( cách đều 4 đơn vị )
S có số số hạng là :
( 55 - 7 ) : 4 + 1 = 13 ( số )
=> S = ( 7 + 55 ) . 13 : 2 = 403
c) S = 2 + 4 + 6 + ... + 2016 + 2018 ( cách đều 2 đơn vị )
S có số số hạng là :
( 2018 - 2 ) : 2 + 1 = 1009 ( số )
=> S = ( 2 + 2018 ) . 1009 : 2 = 1019090
a, Số các số hạng là : ( 999 - 1 ) : 1 + 1 = 999 ( số hạng )
Tổng trên là : ( 999 + 1 ) x 999 : 2 = 499 500
b, Số các số hạng là : ( 2010 - 10 ) : 2 + 1 = 1001 ( số hạng )
Tổng trên là : ( 2010 + 10 ) x 1001 : 2 = 101 000
c, Số các số hạng là : ( 1001 - 21 ) : 2 + 1 = 451
Tổng trên là : ( 1001 + 21 ) x 451 : 2 = 232 505
d, Số các số hạng là : ( 79 - 1 ) : 3 + 1 = 27 ( số hạng )
Tổng trên là : ( 79 + 1 ) x 27 : 2 = 1080
e, Số các số hạng là : ( 115 - 15 ) : 10 + 1 = 11 ( số hạng )
Tổng trên là : ( 115 + 15 ) x 11 : 2 = 715
S = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) + ... + (2017 + 2018 - 2019 - 2020) + (2021 - 2022 + 2023) (nhóm các số hạng vào 505 nhóm, mỗi nhóm có 4 số hạng, thừa ra 3 số hạng nhóm vào 1 nhóm là 506 nhóm)
S = -4 + (-4) + ... + (-4) + 2022
S = -4 x 505 + 2022
S = -2022 + 2022
S = 0
S = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) + ... + (2017 + 2018 - 2019 - 2020) + (2021 - 2022 + 2023) (nhóm các số hạng vào 505 nhóm, mỗi nhóm có 4 số hạng, thừa ra 3 số hạng nhóm vào 1 nhóm là 506 nhóm)
S = -4 + (-4) + ... + (-4) + 2022
S = -4 x 505 + 2022
S = -2022 + 2022
S = 0
a) Ta có: S= 1 + 3 + 5 + ....+ 2021 + 2022
\(S=\dfrac{\left(2021+1\right)1011}{2}+2022=1022121+2022=1024143\)
b) Ta có: S = 2 + 4 + ...+ 100 + 102
\(S=\dfrac{\left(102+2\right)51}{2}=2652\)
c) Ta có: S = 5 + 10 + 15 + ...+ 2010 + 2015 + 2020
\(S=\dfrac{\left(2020+5\right)404}{2}=409050\)