Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(T=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(T=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(T=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(T=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(T=2.\frac{502}{1005}=\frac{1004}{1005}\)
\(\Rightarrow T=\frac{1004}{1005}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009+2011}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2009+2011}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)
\(A=\frac{1}{2}.\frac{2010}{2011}\)
\(\Rightarrow A=\frac{1005}{2011}\)
Ta có :
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.....\frac{99^2}{99.100}\)
\(=\)\(\frac{1^2.2^2.3^2.....99^2}{1.2.2.3.3.4.....99.100}\)
\(=\)\(\frac{1^2.2^2.3^2.....99^2}{1^2.2^2.3^2.4^2.....99^2}.\frac{1}{100}\)
\(=\)\(\frac{1}{100}\)
Bài 1:
\(\left(-\frac{1}{2}\right)^3=\frac{-1}{8}\)
\(\left(-\frac{1}{2}\right)^2=\frac{1}{4}\)
\(\left(-\frac{1}{3}\right)^4=\frac{1}{81}\)
\(\left(-\frac{1}{3}\right)^5=\frac{-1}{243}\)
Bài 2:
\(\left(-\frac{1}{4}\right)^0=1\)
\(\left(-2\frac{1}{3}\right)^2=\left(-\frac{7}{3}\right)^2=\frac{14}{9}\)
\(\left(-1\frac{1}{3}\right)^4=\left(-\frac{4}{3}\right)^4=\frac{256}{81}\)
Với số mũ lẻ, kết quả luôn là âm nếu giá trị trong ngoặc là âm, kết quả luôn là dương với số mũ chẵn.
Đặc biệt số mũ là 0 thì kết quả luôn bằng 1.
a)
\(=\frac{3}{2}.\frac{4}{3}......\frac{100}{99}=\frac{100}{2}=50\)
b)
\(=\frac{\left(-1\right)}{2}.\frac{\left(-2\right)}{3}.....\frac{\left(-99\right)}{100}=\frac{-1}{100}\)
a) \(=\frac{3}{2}.\frac{4}{3}....\frac{100}{99}=\frac{100}{2}=50\)
a) =3/2 . 4/3 . 5/4 ...100/99
=\(\frac{3.4.5...100}{2.3.4..99}\)
=\(\frac{100}{2}\)
b) =
\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)
\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)
\(S=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)......\left(1-\frac{1}{100^2}\right)\)
\(=\frac{3}{4}.\frac{8}{9}.....\frac{9999}{10000}\)
\(=\frac{\left(1.3\right).\left(2.4\right).........\left(99.101\right)}{\left(2.2\right).\left(3.3\right).......\left(100.100\right)}\)
\(=\frac{\left(1.2....99\right)\left(3.4....101\right)}{\left(2.3.....100\right)\left(2.3....100\right)}\)
\(=\frac{1.101}{100.2}=\frac{101}{200}\)