\(\frac{1}{x^2+5x+4}+\frac{1}{x^2+11x+28}+\frac{1}{x^2+17x+70}+\frac{1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

\(=\dfrac{1}{\left(x+1\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+7\right)}+\dfrac{1}{\left(x+7\right)\left(x+10\right)}+\dfrac{1}{\left(x+10\right)\left(x+13\right)}+\dfrac{1}{\left(x+13\right)\left(x+16\right)}\)

\(=\dfrac{1}{3}\left(\dfrac{3}{\left(x+1\right)\left(x+4\right)}+\dfrac{3}{\left(x+4\right)\left(x+7\right)}+\dfrac{3}{\left(x+7\right)\left(x+10\right)}+\dfrac{3}{\left(x+10\right)\left(x+13\right)}+\dfrac{3}{\left(x+13\right)\cdot\left(x+16\right)}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{x+1}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+7}+\dfrac{1}{x+7}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+13}+\dfrac{1}{x+13}-\dfrac{1}{x+16}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{x+1}-\dfrac{1}{x+16}\right)\)

\(=\dfrac{1}{3}\cdot\dfrac{x+16-x-1}{\left(x+1\right)\left(x+16\right)}=\dfrac{5}{\left(x+1\right)\left(x+16\right)}\)

Bài 2: 

\(\Leftrightarrow a^2-2a+1+b^2+4b+4+4c^2-4c+1=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+4\right)^2+\left(2c-1\right)^2=0\)

Dấu '=' xảy ra khi a=1; b=-4; c=1/2

26 tháng 11 2017

Bài 1: 

x3+y3=152=> (x+y)(x2-xy+y2)=152

 Mà x2-xy+y2=19

=> 19(x+y)=152=> x+y=8

Ta cũng có x-y=2

=> x=5;y=3

Bài 2: 

x2+4y2+z2=2x+12y-4z-14

=> x2+4y2+z2-2x-12y+4z+14=0

=> (x2-2x+1)+(4y2-12y+9)+(z2+4z+4)=0

=> (x+1)2+(2y-3)2+(z+2)2=0

=> (x+1)2=(2y-3)2=(z+2)2=0

=> x=-1;y=3/2;z=-2

Bài 3\(\left(\frac{1}{x^2+x}-\frac{1}{x+1}\right):\frac{1-2x+x^2}{2014x}=\left(\frac{1}{x\left(x+1\right)}-\frac{1}{x+1}\right):\frac{\left(1-x\right)^2}{2014x}=\frac{1-x}{x\left(x+1\right)}.\frac{2014x}{\left(1-x\right)^2}=\frac{2014}{\left(x+1\right)\left(1-x\right)}=\frac{2014}{1-x^2}\)

4 tháng 1 2017

\(S=\frac{1}{x^2+5x+4}+\frac{1}{x^2+11x+28}+\frac{1}{x^2+17x+70}+\frac{1}{x^2+23x+130}+\frac{1}{x^2+29x+208}\)

\(=\frac{1}{x^2+4x+x+4}+\frac{1}{x^2+7x+4x+28}+...+\frac{1}{x^2+16x+13x+208}\)

\(=\frac{1}{x\left(x+4\right)+\left(x+4\right)}+\frac{1}{x\left(x+7\right)+4\left(x+7\right)}+...+\frac{1}{x\left(x+16\right)+13\left(x+16\right)}\)

\(=\frac{1}{\left(x+1\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+7\right)}+...+\frac{1}{\left(x+13\right)\left(x+16\right)}\)

\(=\frac{1}{3}\left[\frac{3}{\left(x+1\right)\left(x+4\right)}+\frac{3}{\left(x+4\right)\left(x+7\right)}+...+\frac{3}{\left(x+13\right)\left(x+16\right)}\right]\)

\(=\frac{1}{3}\left[\frac{1}{x+1}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+7}+...+\frac{1}{x+13}-\frac{1}{x+16}\right]\)

\(=\frac{1}{3}\left[\frac{1}{x+1}-\frac{1}{x+16}\right]\)\(=\frac{1}{3}\left[\frac{x+16}{\left(x+1\right)\left(x+16\right)}-\frac{x+1}{\left(x+1\right)\left(x+16\right)}\right]\)

\(=\frac{1}{3}\cdot\frac{15}{x^2+17x+16}=\frac{5}{x^2+7x+16}\)

21 tháng 7 2019
https://i.imgur.com/Dm8xLqm.jpg
21 tháng 7 2019

undefinedundefinedtrong quá trình bạn xem bài mk thấy chỗ nào sai dấu thì sửa giùm mk nha trong quá trình làm mk cx có thể sai sót nhầm lẫn nha

26 tháng 4 2018

BÀI 1:

 a)   \(ĐKXĐ:\) \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)

b)  \(A=\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)

\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)^2}{8}\)

\(=\frac{2x+4-2x+4}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}\)

\(=\frac{x+2}{x-2}\)

c)  \(A=0\)  \(\Rightarrow\)\(\frac{x+2}{x-2}=0\)

                      \(\Leftrightarrow\) \(x+2=0\)

                      \(\Leftrightarrow\)\(x=-2\) (loại vì ko thỏa mãn ĐKXĐ)

Vậy ko tìm đc  x   để  A = 0

p/s:  bn đăng từng bài ra đc ko, mk lm cho

26 tháng 4 2018

giải nhanh giúp mik nha mn:)

18 tháng 2 2018

6) Ta có

\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)

\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)

16 tháng 4 2017

mình sẽ giải câu 3 cho bạn nhé

đề bài=> \(\frac{1}{x^2+4x+5x+20}+\frac{1}{x^2+5x+6x+30}+\frac{1}{x^2+6x+7x+42}=\frac{1}{18}\)

\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-...-\frac{1}{x+7}=\frac{1}{18}\)

\(\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(18\left(x+7\right)-18\left(x+4\right)=\left(x+7\right)\left(x+4\right)\)

\(\left(x+13\right)\left(x-2\right)=0\)

\(\orbr{\begin{cases}x=-13\\x=2\end{cases}}\)

nhớ thank mk nhé

16 tháng 4 2017

câu 5 nà

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

<=>\(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\ge9\)

<=>\(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge9\)

<=>\(3+2+2+2\ge9\)(bất đẳng thức luôn đúng)

=> điều phải chứng minh

8 tháng 3 2020
https://i.imgur.com/Tqad5uk.jpg
Bài 1:1,Tìm m sao cho phương trình ẩn x :(m-1).x+3m-2=0 có nghiệm duy nhất thỏa man x> bằng 12,Giải phương trình x2+\(\frac{9x^2}{\left(x+3\right)^2}\)=40Bài 2::Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O .Một đường thẳng kẻ qua A cắt cạnh BC tại M và cắt đường thẳng CD tại MN.Gọi K là giao của OM và DN .Chứng minh CK vuông góc BNBài 3: hình vuông ABCD và 13 đường thẳng bất kì có cùng tính chất là...
Đọc tiếp

Bài 1:

1,Tìm m sao cho phương trình ẩn x :(m-1).x+3m-2=0 có nghiệm duy nhất thỏa man x> bằng 1

2,Giải phương trình x2+\(\frac{9x^2}{\left(x+3\right)^2}\)=40

Bài 2::Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O .Một đường thẳng kẻ qua A cắt cạnh BC tại M và cắt đường thẳng CD tại MN.Gọi K là giao của OM và DN .Chứng minh CK vuông góc BN

Bài 3: hình vuông ABCD và 13 đường thẳng bất kì có cùng tính chất là mỗi đường thẳng chia hình vuông thành 2 tứ giác có tỉ số diện tích là \(\frac{2}{5}\).Chứng minh rằng có 4 đường thẳng trong 13 đoạn thẳng đó cùng đi qua 1 điểm

Bài 4:Cho hình bình hành ABCD (AC>BD),hình chiếu vuông góc của C lên AB,AD lần lượt là E và F

Chúng minh:

1,CE.CD=CB.CF và △ABC đồng dạng △FCE

2,AB.AE+AD.AF=AC2

Bài 5:

1,Tìm các số nguyên x,y thảo mãn x2+8y2+4xy-2x-4y=4

2,Cho đa thức h(x) bậc 4 ,hệ số của 3 cao nhất là 1 ,biết h(1)=2;h(2)=5;H(4)=17;H(-3)=10.Tìm đa thức h(x)

Bài 6:Cho biểu thức :A=\(\left(\frac{x^3-1}{x^2-x}+\frac{x^2-4}{x^2-2x}-\frac{2-x}{x}\right):\frac{x+1}{x}\) với x≠0;x≠1;x≠2;x≠-1

1,Rút gọn biểu thức A

2,Tính A biết x thỏa mãn x3-4x2+3x=0

Bài 7:a,Cho a+b+c​​≠0 và a3+b3+c3=3abc.Tính N=\(\frac{a^{2016}+b^{2016}+c^{2016}}{\left(a+b+c\right)^{2016}}\)

b,Tìm số tự nhiên n để n2+4n+2013 là 1 số chính phương

Bai 8: Hình thang ABCD (AB//CD) có 2 đường chéo cắt nhau tại O .Đường thẳng qua O và song song với đáy AB cắt cạnh bên AD ,BC theo thứ tự ở M và N.

a, CMR OM=ON

b,CMR: \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\)

c,Biết SAOB=20152(đvị diện tích );SCOD=20162(đvị diện tích ).Tính SABCD

Bài 9:Cho a,b,c là các số dương .Chứng minh bất đẳng thức :

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}>hoacbang\frac{a+b+c}{2}\)

 

 

 

3
13 tháng 2 2020

áp dụng bđt cauchy-shwarz dạng engel

\(\text{ Σ}_{cyc}\frac{a^2}{b+c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)\(=\frac{a+b+c}{2}\)

13 tháng 2 2020

Ta có hđt \(\text{ Σ}_{cyc}a^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Mà a+b+c khác 0 nên a = b = c

\(\Rightarrow N=1\)