\(\frac{1x3x5+2x6x10+4x12x20+7x2x35}{1x5x7+2x10x14+4x20x28+7x35x49...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2015

A = \(\frac{1.3.5+2.6.10+4.12.20+7.21.35}{1.5.7+2.10.14+4.20.28+7.35.49}\)

A = \(\frac{1.3.5.\left(1+2+4+7\right)}{1.5.7.\left(1+2+4+7\right)}\)

A = \(\frac{1.3.5}{1.5.7}\)

A = \(\frac{3}{7}\)

16 tháng 8 2015

**** cho mình nha!

4 tháng 7 2019

a)\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{10.11}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)

\(1-\frac{1}{11}\)

\(\frac{10}{11}\)

b) Đặt A = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\)

\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\)

=> 2A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\)

Lấy 2A - A = \(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)

              A  = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^7}\)

              A  = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^2}-...-\frac{1}{2^6}+\frac{1}{2^6}-\frac{1}{2^7}\)

             A   =\(1-\frac{1}{2^7}\)

4 tháng 7 2019

Đặt \(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}+\frac{1}{110}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}+\frac{1}{10.11}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)

\(A=1-\frac{1}{11}\)

\(A=\frac{10}{11}\)

Đặt \(B=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}\left(1\right)\)

\(2B=\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+\frac{2}{2^4}+\frac{2}{2^5}+\frac{2}{2^6}+\frac{2}{2^7}\)

\(2B=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}\left(2\right)\)

Lấy \(\left(2\right)-\left(1\right)\)hay \(2B-B\)ta có:

\(2B-B=\left(1+\frac{1}{2}+...+\frac{1}{2^6}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right)\)

\(\Rightarrow B=1-\frac{1}{2^7}\)

\(\Rightarrow B=\frac{2^7-1}{2^7}=\frac{128-1}{128}=\frac{127}{128}\)

HOK TOT

11 tháng 7 2016

\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).\)\(\left(1-\frac{1}{5}\right)\)

=\(\frac{1}{2}.\)\(\frac{2}{3}\cdot\frac{3}{4}\)\(\cdot\frac{4}{5}\)

=\(\frac{1}{5}\)

11 tháng 7 2016

( 1 - 12 ) x ( 1 - 13 ) x ( 1 - 14 ) x ( 1 - 15 )

\(\left(\frac{2}{2}-\frac{1}{2}\right)\times\left(\frac{3}{3}-\frac{1}{3}\right)\times\left(\frac{4}{4}-\frac{1}{4}\right)\times\left(\frac{5}{5}-\frac{1}{5}\right)\)

\(\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\)

\(\frac{1\times2\times3\times4}{2\times3\times4\times5}\)

\(\frac{1}{5}\)

<br class="Apple-interchange-newline"><div id="inner-editor"></div>14 18 +116 +  132 164  + \(\frac{1}{128}\) MC : 128

\(\frac{32}{128}+\frac{16}{128}+\frac{8}{128}+\frac{4}{128}+\frac{2}{128}+\frac{1}{128}\)

\(\frac{32+16+8+4=2+1}{128}\)

\(\frac{207}{128}\)

9 tháng 4 2017

bạn có thể cho đề rõ ràng hơn được ko

9 tháng 4 2017

bạn nào trả lời giúp mk với

8 tháng 5 2018

B2 : \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{114}+\frac{1}{196}+\frac{1}{256}+\frac{1}{324}\)

\(=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{18^2}\)

\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{4^2}< \frac{1}{2\cdot4}\)

\(\frac{1}{6^2}< \frac{1}{4\cdot6}\)

...

\(\frac{1}{18}< \frac{1}{16\cdot18}\)

\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{18^2}< \frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{16}-\frac{1}{18}\right)\)

\(\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{18^2}< \frac{1}{2}< \frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{18}\right)\)

26 tháng 7 2020

a) Ta có\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{110}=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{10.11}\)

\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{10.11}\right)=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{11}\right)=1-\frac{2}{11}=\frac{9}{11}\)

b) Ta có \(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{2048}=1-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2048}\right)\)(1)

Đặt S = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}+\frac{1}{2048}\)

=> \(2S=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)

Lấy 2S trừ S ta có :

2S - S \(=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}+\frac{1}{2048}\right)\)

\(S=1-\frac{1}{2048}\)

Khi đó (1) <=> \(1-\left(1-\frac{1}{2048}\right)=1-1+\frac{1}{2048}=\frac{1}{2048}\)

26 tháng 7 2020

\(a,\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+....+\frac{2}{90}+\frac{2}{110}\)

\(=2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+.....+\frac{1}{90}+\frac{1}{110}\right)\)

\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{9.10}+\frac{1}{10.11}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-....+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{11}\right)\)

\(=1-\frac{2}{11}\)

\(=\frac{9}{11}\)