Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 1/3-3/4+3/5+1/4-2/9-1/36+1/15
=(1/3+3/5+1/15)-(3/4-1/4+2/9+1/36)
=1 - 3/4
=1/4
b, 3-1/4+2/3-5-1/3+6/5-6+7/4-3/2
=(3-5-6)-(1/4-7/4)+(2/3-1/3)+(6/5-3/2)
=-8 +3/2 +1/3 -3/10
=-97/15
a: =>x/3=-5/2
hay x=-15/2
b: \(\Leftrightarrow\dfrac{7}{3}:x=\dfrac{1}{5}-\dfrac{4}{9}=\dfrac{9-20}{45}=\dfrac{-11}{45}\)
\(\Leftrightarrow x=\dfrac{7}{3}:\dfrac{-11}{45}=\dfrac{7}{3}\cdot\dfrac{-45}{11}=\dfrac{-105}{11}\)
c: \(\Leftrightarrow x=\dfrac{-7}{2}\cdot2=-7\)
d: =>x/27=-1/3+2/9=2/9-3/9=-1/9=-3/27
=>x=-3
bài 1) ta có : \(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\Leftrightarrow2\left(x+y\right)=3\left(2x-y\right)\)
\(\Leftrightarrow2x+2y=6x-3y\Leftrightarrow4x=5y\Leftrightarrow\dfrac{x}{y}=\dfrac{5}{4}\)
vậy \(\dfrac{x}{y}=\dfrac{5}{4}\)
bài 1
\(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\Leftrightarrow\dfrac{2.\dfrac{x}{y}-1}{\dfrac{x}{y}+1}=\dfrac{2.\dfrac{x}{y}+2-3}{\dfrac{x}{y}+1}=2-\dfrac{3}{\dfrac{x}{y}+1}=\dfrac{2}{3}\)
\(2-\dfrac{2}{3}=\dfrac{4}{3}=\dfrac{3}{\dfrac{x}{y}+1}\)
\(\left(\dfrac{x}{y}+1\right)=\dfrac{9}{4}\Rightarrow\dfrac{x}{y}=\dfrac{9}{4}-\dfrac{4}{4}=\dfrac{5}{4}\)
B1
a. = 7/3. ( 37/5 - 32/5)
= 7/3 . 1
= 7/3
Phần b có gì đó sai sao lại có 3:+
c. = 4 + 6 - 3 + 5
= 12
d. = -5/21 : -19/21 : 4/5
= 25/76
B2
a. 1/4 : x =1/2 - 3/4
x = -1/4
x = 1/4 : -1/4
x = -1
b. 2 . | 2x - 3 | = 4 - (-8)
2 . | 2x - 3| = 12
| 2x - 3 | = 12:2
| 2x - 3 | = 6
| x - 3 | = 6:2
| x - 3 | = 3
=> x - 3 = +- 3
* x - 3 = 3
x = 6
* x - 3 = -3
x = 0
Chúc bạn vui vẻ
Câu 2 :
\(x-y=7\)
\(\Rightarrow x=7+y\)
*)
\(B=\dfrac{3\left(7+y\right)-7}{2\left(7+y\right)+y}-\dfrac{3y+7}{2y+7+y}\)
\(=\dfrac{21+3y-7}{14+3y}-\dfrac{3y+7}{3y+7}\)
\(=\dfrac{14y+3y}{14y+3y}-1\)
\(=1-1\)
\(=0\)
Vậy B = 0
2/ Ta có :
\(B=\dfrac{3x-7}{2x+y}-\dfrac{3y+7}{2y+x}\)
\(=\dfrac{3x-\left(x-y\right)}{2x+y}-\dfrac{3y+\left(x-y\right)}{2y+x}\)
\(=\dfrac{3x-x+y}{2y+x}-\dfrac{3y+x-y}{2y+x}\)
\(=\dfrac{2x+y}{2x+y}-\dfrac{2y+x}{2y+x}\)
\(=1-1=0\)
Bài 1:
a: \(=\dfrac{1}{2}-\dfrac{7}{13}-\dfrac{1}{3}-\dfrac{6}{13}+\dfrac{1}{3}+\dfrac{4}{3}=\dfrac{4}{3}-1+\dfrac{1}{2}=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\)
b: \(=\dfrac{3}{4}+\dfrac{2}{5}+\dfrac{1}{9}-1-\dfrac{2}{5}+\dfrac{5}{4}=2-1+\dfrac{1}{9}=\dfrac{10}{9}\)
c: \(=\left(\dfrac{-3}{2}\cdot\dfrac{4}{3}\right)\cdot\dfrac{-9}{2}-\dfrac{1}{2}=9-\dfrac{1}{2}=8.5\)
Câu 1:
\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\Rightarrow\left(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}\right)\) - \(\left(\dfrac{x+1}{13}+\dfrac{x+1}{14}\right)=0\)
\(\Rightarrow\left(x+1\right).\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)\)= 0
Vì \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\)
\(\Rightarrow x+1=0\)
=> x = 0 - 1
=> x = -1
Câu 2:
Ta có: \(A=\dfrac{3n+9}{n-4}=\dfrac{3n-3.4+9+12}{n-4}\)
\(=\dfrac{3.\left(n-4\right)+21}{n-4}=3+\dfrac{21}{n-4}\)
Để A có giá trị nguyên thì:
n - 4 \(\in\) Ư(21)
=> n - 4 \(\in\)
n4 | 3 | -3 | 7 | -7 | -1 | 1 | -21 | 21 |
n | 7 | 1 | 11 | -3 | 3 | 5 | -17 | 25 |
Bài 2:
a: Để x>0 thì a-3>0
=>a>3
b: Để x<0 thì a-3<0
=>a<3
c: Để x=0 thì a-3=0
=>a=3
Bài 1:
\(=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)+\left(\dfrac{-3}{4}-\dfrac{2}{9}-\dfrac{1}{36}\right)+\dfrac{1}{64}\)
\(=\dfrac{5+9+1}{15}+\dfrac{-27-8-1}{36}+\dfrac{1}{64}\)
\(=\dfrac{1}{64}\)