Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5.104+4.103.162.5.10+9
=5.10000+4.1000.6.256+5.5.10+9
=50000+4000.1536+5.50+9
=54000.1536+250+9
=82944000+250+9
=82944259
Bài 1:
a) 23=2.2.2=823=2.2.2=8;
24=23.2=8.2=1624=23.2=8.2=16;
25=24.2=16.2=3225=24.2=16.2=32;
26=25.2=32.2=6426=25.2=32.2=64;
27=26.2=64.2=12827=26.2=64.2=128;
28=27.2=128.2=25628=27.2=128.2=256;
29=28.2=256.2=51229=28.2=256.2=512;
210=29.2=512.2=1024210=29.2=512.2=1024
b) 32=3.3=932=3.3=9;
33=32.3=9.3=2733=32.3=9.3=27;
34=33.3=27.3=8134=33.3=27.3=81;
35=34.3=81.3=24335=34.3=81.3=243.
c) 42=4.4=1642=4.4=16;
43=42.4=16.4=6443=42.4=16.4=64;
44=43.4=64.4=25644=43.4=64.4=256.
d) 52=5.5=2552=5.5=25;
53=52.5=25.5=12553=52.5=25.5=125;
54=53.5=125.5=62554=53.5=125.5=625.
e) 62=6.6=3662=6.6=36;
63=62.6=36.6=21663=62.6=36.6=216;
64=63.6=216.6=129664=63.6=216.6=1296.
Bài 1 :
\(2^x.8=512\)
\(2^x=512:8\)
\(2^x=64\)
\(2^x=2^6\)
\(\Rightarrow x=6\)
\(b,\left(2x+1\right)^3=125\)
\(\left(2x+1\right)^3=5^3\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
\(c,x^{20}=x\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(d,\left(x-3\right)^{10}=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
Mik làm được 1 bài thôi . Tiếc quá mình sắp phải đi học rồi.
BÀi 12:
S=1 + 2 + 22 + `23 +..........+ 22017
2S=2 + 22 + `23 + 24 +..........+22017 + 22018
Trừ đi hai vế ta được:
S=1 + 22018
13/ => 10 + 2x = 42 = 16
=> 2x = 6
=> x = 3
14/ => 52x : 53 - 50 = 75
=> 52x : 53 = 125 = 53
=> 52x = 56
=> 2x = 6
=> x = 3
15/ => (26 - 3x) : 5 = 4
=> 26 - 3x = 20
=> 3x = 6
=> x = 2
16/ => x - 17 = -25
=> x = -8
4
a)\(S=1+2+2^2+...+2^{10}\)
\(2S=2+2^2+2^3+...+2^{11}\)
\(2S-S=\left(2+2^2+2^3+...+2^{11}\right)-\left(1+2+2^2+...+2^{10}\right)\)
\(S=2^{11}-1\)
b)\(S=1+3+3^2+...+3^6\)
\(3S=3+3^2+3^3+...+3^7\)
\(3S-S=\left(3+3^2+3^3+...+3^7\right)-\left(1+3+3^2+...+3^6\right)\)
\(2S=3^7-1\)
\(S=\frac{3^7-1}{2}\)
a.\(S=1+2+2^2+...+2^{10}\)
\(2S=2+2^2+2^3+...+2^{11}\)
\(\Rightarrow2S-S=S=\left(2+2^2+2^3+...+2^{11}\right)-\left(1+2+2^2+...+2^{10}\right)\)
\(=2^{11}-1\)
b) \(S=1+3+3^2+...+3^6\)
\(3S=3+3^2+3^3+...+3^7\)
\(\Rightarrow3S-S=2S=\left(3+3^2+3^3+...+3^7\right)-\left(1+3+3^2+...+3^6\right)\)
\(2S=3^7-1\Rightarrow S=\frac{3^7-1}{2}\)
51995 chúc bạn học tốt !
51995 nhaa