...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2020

                                  qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

26 tháng 8 2020

Đặt a+2b là x; 3c+d là y

Ta có (x-y)(x+y)=x2-y2

                         =(a+2b)2-(3c+d)2

                         =a2+4b2-9c2-d2+4ab-6cd

2 tháng 9 2019

\(a,\left(-4xy-5\right)\left(5-4xy\right)=\left(4xy+5\right)\left(4xy-5\right).\)

\(=\left(4xy\right)^2-5^2=16x^2y^2-25\)

\(b,\left(a^2b+ab^2\right)\left(ab^2-a^2b\right)=\left(ab^2+a^2b\right)\left(ab^2-a^2b\right)\)

\(=\left(ab^2\right)^2-\left(a^2b\right)^2=a^2b^4-a^4b^2\)

\(c,\left(3x-4\right)^2+2\left(3x-4\right)\left(4-x\right)+\left(4-x\right)^2\)

\(=\left[\left(3x-4\right)+\left(4-x\right)\right]^2\)

\(=\left(3x-4+4-x\right)^2=\left(2x\right)^2=4x^2\)

\(d,\left(a^2+ab+b^2\right)\left(a^2-ab+b^2\right)-\left(a^4+b^4\right)\)

\(=\left[\left(a^2+b^2\right)+ab\right]\left[\left(a^2+b^2\right)-ab\right]-\left(a^4+b^4\right)\)

\(=\left(a^2+b^2\right)^2-\left(ab\right)^2-a^4-b^4\)

\(=a^4+2a^2b^2+b^4-a^2b^2-a^4-b^4=a^2b^2\)

23 tháng 11 2016

Ta có

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.\frac{3}{\sqrt[3]{abc}}\ge9\)

Dấu = xảy ra khi \(a=b=c=\frac{2014}{6}=\frac{1007}{3}\)

24 tháng 11 2016

Bài này mk làm đc tưf bữa mới đăng lên r ..

6 tháng 6 2020

a) Biến đổi VT . Mẫu chung là ( a + 2b )( a - 2b )

\(VT=\frac{a+2b-6b-2\left(a-2b\right)}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 1 )

Biến đổi VP 

\(-\frac{1}{2a}\left(\frac{a^2+4b^2}{a^2-4b^2}+1\right)=-\frac{1}{2a}\cdot\frac{a^2+4b^2+a^2-4b^2}{a^2-4b^2}\)

\(=-\frac{1}{2a}\cdot\frac{2a^2}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 2 )

Từ ( 1 ) và ( 2 ) => VT = VP ( đpcm )

b) \(a^3+b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)^3\)

<=> \(b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)^3=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)-a^3\)( * )

Biến đổi VT của ( * ) ta có :

\(VT=\left[b+\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right]\left[b^2-\frac{b^2\left(2a^3+b^3\right)}{a^3-b^3}+\frac{b^2\left(2a^3+b^3\right)^2}{\left(a^3-b^3\right)^2}\right]\)

\(=\frac{3a^3b}{a^3-b^3}\cdot\frac{3a^6b^2+3a^3b^5+3b^8}{\left(a^3-b^3\right)^2}\)

\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 1 )

\(VP=\left[\frac{a\left(a^3+2b^3\right)}{a^3-b^3}-a\right]\left[\frac{a^2\left(a^3+2b^3\right)^2}{\left(a^3-b^3\right)^2}+\frac{a^2\left(a^3+2b^3\right)}{a^3-b^3}+a^2\right]\)

\(=\frac{3ab^3}{a^3-b^3}\cdot\frac{3a^8+3a^5b^3+3a^2b^6}{\left(a^3-b^3\right)^2}\)

\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 2 )

Từ ( 1 ) và ( 2 ) => VT = VP => ( * ) đúng 

=> Hằng đẳng thức đúng 

29 tháng 6 2018

BÀI 1:

a) \(x^4+2x^2y+y^2=\left(x^2+y\right)^2\)

b) \(\left(2a+b\right)^2-\left(2b+a\right)^2=\left(2a+b+2b+a\right)\left(2a+b-2b-a\right)\)

\(=\left(3a+3b\right)\left(a-b\right)=3\left(a+b\right)\left(a-b\right)\)

c) \(\left(a^3-b^3\right)+\left(a-b\right)^2=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)^2\)

\(=\left(a-b\right)\left[a^2+ab+b^2+\left(a-b\right)\right]=\left(a-b\right)\left(a^2+ab+b^2+a-b\right)\)

d) \(\left(x^2+1\right)^2-4x^2=\left(x^2+1-2x\right)\left(x^2+1+2x\right)=\left(x-1\right)^2\left(x+1\right)^2\)

e) \(\left(y^3+8\right)+\left(y^2-4\right)=\left(y+2\right)\left(y^2-y+2\right)\)

f) \(1-\left(x^2-2xy+y^2\right)=1-\left(x-y\right)^2=\left(1-x+y\right)\left(1+x-y\right)\)

g) \(x^4-1=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)

h) ktra lại đề

m) \(\left(x-a\right)^4-\left(x+a\right)^4=-8ax\left(a^2+x^2\right)\)

29 tháng 6 2018

a ) x^4 + 2x^2y + y^2 

   Dùng hằng đẳng thức ( a + b )^2 = a^2 +2ab + b^2

   = ( x^2 + y )^2

b ) ( 2a + b )^2 - ( 2b + a )^2

   = ( 4a^2 + 4ab + b^2 ) - ( 4b^2 + 4ab + a^2 )

   = 4a^2 + 4ab + b^2 - 4b^2 - 4ab - a^2

   = 3a^2- 3b^2

   = 3( a^2 - b^2 ) 

10 tháng 1 2017

Ta có:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.\frac{3}{\sqrt[3]{abc}}\ge9\)

Dấu "=" xảy ra khi \(a=b=c=\frac{2014}{6}=\frac{1007}{3}\)

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

Lời giải:

a)

\((2a-5b)^2+(2a+5b)^2\)

\(=4a^2-2.2a.5b+25b^2+4a^2+2.2a.5b+25b^2\)

\(=8a^2+50b^2=2(4a^2+25b^2)\)

b)

\((a-2b-3c)^2-(a-2b+3c)^2\)

\(=[(a-2b-3c)-(a-2b+3c)][(a-2b-3c)+(a-2b+3c)]\)

\(=-6c(2a-4b)=12c(2b-a)\)