Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(-4xy-5\right)\left(5-4xy\right)=\left(4xy+5\right)\left(4xy-5\right).\)
\(=\left(4xy\right)^2-5^2=16x^2y^2-25\)
\(b,\left(a^2b+ab^2\right)\left(ab^2-a^2b\right)=\left(ab^2+a^2b\right)\left(ab^2-a^2b\right)\)
\(=\left(ab^2\right)^2-\left(a^2b\right)^2=a^2b^4-a^4b^2\)
\(c,\left(3x-4\right)^2+2\left(3x-4\right)\left(4-x\right)+\left(4-x\right)^2\)
\(=\left[\left(3x-4\right)+\left(4-x\right)\right]^2\)
\(=\left(3x-4+4-x\right)^2=\left(2x\right)^2=4x^2\)
\(d,\left(a^2+ab+b^2\right)\left(a^2-ab+b^2\right)-\left(a^4+b^4\right)\)
\(=\left[\left(a^2+b^2\right)+ab\right]\left[\left(a^2+b^2\right)-ab\right]-\left(a^4+b^4\right)\)
\(=\left(a^2+b^2\right)^2-\left(ab\right)^2-a^4-b^4\)
\(=a^4+2a^2b^2+b^4-a^2b^2-a^4-b^4=a^2b^2\)
Ta có
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.\frac{3}{\sqrt[3]{abc}}\ge9\)
Dấu = xảy ra khi \(a=b=c=\frac{2014}{6}=\frac{1007}{3}\)
a) Biến đổi VT . Mẫu chung là ( a + 2b )( a - 2b )
\(VT=\frac{a+2b-6b-2\left(a-2b\right)}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 1 )
Biến đổi VP
\(-\frac{1}{2a}\left(\frac{a^2+4b^2}{a^2-4b^2}+1\right)=-\frac{1}{2a}\cdot\frac{a^2+4b^2+a^2-4b^2}{a^2-4b^2}\)
\(=-\frac{1}{2a}\cdot\frac{2a^2}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 2 )
Từ ( 1 ) và ( 2 ) => VT = VP ( đpcm )
b) \(a^3+b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)^3\)
<=> \(b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)^3=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)-a^3\)( * )
Biến đổi VT của ( * ) ta có :
\(VT=\left[b+\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right]\left[b^2-\frac{b^2\left(2a^3+b^3\right)}{a^3-b^3}+\frac{b^2\left(2a^3+b^3\right)^2}{\left(a^3-b^3\right)^2}\right]\)
\(=\frac{3a^3b}{a^3-b^3}\cdot\frac{3a^6b^2+3a^3b^5+3b^8}{\left(a^3-b^3\right)^2}\)
\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 1 )
\(VP=\left[\frac{a\left(a^3+2b^3\right)}{a^3-b^3}-a\right]\left[\frac{a^2\left(a^3+2b^3\right)^2}{\left(a^3-b^3\right)^2}+\frac{a^2\left(a^3+2b^3\right)}{a^3-b^3}+a^2\right]\)
\(=\frac{3ab^3}{a^3-b^3}\cdot\frac{3a^8+3a^5b^3+3a^2b^6}{\left(a^3-b^3\right)^2}\)
\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 2 )
Từ ( 1 ) và ( 2 ) => VT = VP => ( * ) đúng
=> Hằng đẳng thức đúng
BÀI 1:
a) \(x^4+2x^2y+y^2=\left(x^2+y\right)^2\)
b) \(\left(2a+b\right)^2-\left(2b+a\right)^2=\left(2a+b+2b+a\right)\left(2a+b-2b-a\right)\)
\(=\left(3a+3b\right)\left(a-b\right)=3\left(a+b\right)\left(a-b\right)\)
c) \(\left(a^3-b^3\right)+\left(a-b\right)^2=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)^2\)
\(=\left(a-b\right)\left[a^2+ab+b^2+\left(a-b\right)\right]=\left(a-b\right)\left(a^2+ab+b^2+a-b\right)\)
d) \(\left(x^2+1\right)^2-4x^2=\left(x^2+1-2x\right)\left(x^2+1+2x\right)=\left(x-1\right)^2\left(x+1\right)^2\)
e) \(\left(y^3+8\right)+\left(y^2-4\right)=\left(y+2\right)\left(y^2-y+2\right)\)
f) \(1-\left(x^2-2xy+y^2\right)=1-\left(x-y\right)^2=\left(1-x+y\right)\left(1+x-y\right)\)
g) \(x^4-1=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)
h) ktra lại đề
m) \(\left(x-a\right)^4-\left(x+a\right)^4=-8ax\left(a^2+x^2\right)\)
Lời giải:
a)
\((2a-5b)^2+(2a+5b)^2\)
\(=4a^2-2.2a.5b+25b^2+4a^2+2.2a.5b+25b^2\)
\(=8a^2+50b^2=2(4a^2+25b^2)\)
b)
\((a-2b-3c)^2-(a-2b+3c)^2\)
\(=[(a-2b-3c)-(a-2b+3c)][(a-2b-3c)+(a-2b+3c)]\)
\(=-6c(2a-4b)=12c(2b-a)\)
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
Đặt a+2b là x; 3c+d là y
Ta có (x-y)(x+y)=x2-y2
=(a+2b)2-(3c+d)2
=a2+4b2-9c2-d2+4ab-6cd