\(-17,5+\dfrac{5}{3}-2\dfrac{1}{7}\)/\(7-\df...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

Bài 1 :

Tự bấm máy tính nhé!

Bài 2 :

\(25\le5.5^n\le125\)

\(\Leftrightarrow5^2\le5^{n-1}\le5^3\)

\(\Leftrightarrow\left[{}\begin{matrix}n-1=2\\n-1=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}n=3\\n=4\end{matrix}\right.\) \(\left(tm\right)\)

Vậy ...............

Bài 3 :

Ta có :

\(3.24^{100}=3.3^{100}.8^{100}=3^{101}.\left(2^3\right)^{100}=3^{101}.2^{300}\left(1\right)\)

Lại có :

\(4^{300}=\left(2.2\right)^{300}=2^{300}.2^{300}=2^{2.150}.2^{300}=\left(2^2\right)^{150}.2^{300}=4^{150}.2^{300}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow3^{101}.3^{300}< 4^{150}.2^{300}\left(3^{101}< 4^{150}\right)\)

\(\Leftrightarrow4^{300}>3.24^{100}\)

\(\Leftrightarrow4^{300}+3^{300}-2^{300}>3.24^{100}\)

8 tháng 8 2017

Mình vẫn chưa hiểu đoạn (1)+(2)

a: |x+2/3|+2=7/3

=>|x+2/3|=1/3

=>x+2/3=1/3 hoặc x+2/3=-1/3

=>x=-1/3 hoặc x=-1

b: \(2^{300}=\left(2^6\right)^{50}=64^{50}>25^{50}\)

c: \(3a=3^2+3^3+...+3^{2009}\)

\(\Leftrightarrow2a=3^{2009}-3\)

hay \(a=\dfrac{3^{2009}-3}{2}\)

\(2a+3=3^x\)

nên \(3^x=3^{2009}-3+3=3^{2009}\)

=>x=2009

Bài 2: 

a: \(A=11+\dfrac{3}{13}-2-\dfrac{4}{7}-5-\dfrac{3}{13}\)

\(=4-\dfrac{4}{7}=\dfrac{24}{7}\)

b: \(B=6+\dfrac{4}{9}+3+\dfrac{7}{11}-4-\dfrac{4}{9}\)

\(=5+\dfrac{7}{11}=\dfrac{62}{11}\)

c: \(C=\dfrac{-5}{7}\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+1+\dfrac{5}{7}=1\)

d: \(D=\dfrac{7}{10}\cdot\dfrac{8}{3}\cdot20\cdot\dfrac{3}{8}\cdot\dfrac{5}{28}\)

\(=\dfrac{20}{10}\cdot7\cdot\dfrac{8}{3}\cdot\dfrac{3}{8}\cdot\dfrac{5}{28}=2\cdot\dfrac{5}{4}=\dfrac{5}{2}\)

20 tháng 5 2017

\(5A=\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+...+\dfrac{11}{5^{11}}.\)

\(4A=5A-A=\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}=B-\dfrac{11}{5^{12}}.\)

\(5B=1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{10}}.\)

\(4B=5B-B=1-\dfrac{1}{5^{11}}\)

\(\Rightarrow4A=\dfrac{1}{4}\left(1-\dfrac{1}{5^{11}}\right)-\dfrac{1}{5^{12}}< \dfrac{1}{4}\Rightarrow A< \dfrac{1}{16}\)

a: \(=-8\cdot\left(\dfrac{3}{4}-\dfrac{1}{4}\right):\left(\dfrac{9}{4}-\dfrac{7}{6}\right)\)

\(=-8\cdot\dfrac{1}{2}:\dfrac{27-14}{12}\)

\(=-4\cdot\dfrac{12}{13}=\dfrac{-48}{13}\)

b: \(=\left(\dfrac{10}{3}+\dfrac{5}{2}\right):\left(\dfrac{19}{6}-\dfrac{21}{5}\right)-\dfrac{11}{31}\)

\(=\dfrac{35}{6}:\dfrac{-31}{30}-\dfrac{11}{31}\)

\(=\dfrac{-35}{6}\cdot\dfrac{30}{31}-\dfrac{11}{31}=-6\)

21 tháng 9 2017

Từ \(\dfrac{a}{1+a}+\dfrac{2b}{2+b}+\dfrac{3c}{3+c}\le\dfrac{6}{7}\)

\(\Leftrightarrow1-\dfrac{a}{1+a}+2-\dfrac{2b}{2+b}+3-\dfrac{3c}{3+c}\ge6-\dfrac{6}{7}\)

\(\Leftrightarrow\dfrac{1}{a+1}+\dfrac{4}{b+2}+\dfrac{9}{c+3}\ge\dfrac{36}{7}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{1}{a+1}+\dfrac{4}{b+2}+\dfrac{9}{c+3}\)

\(\ge\dfrac{\left(1+2+3\right)^2}{a+b+c+6}=\dfrac{36}{7}=VP\)

Xảy ra khi \(a=\dfrac{1}{6};b=\dfrac{1}{3};c=\dfrac{1}{2}\)

21 tháng 9 2017

2) \(\dfrac{1}{x}+\dfrac{25}{y}+\dfrac{64}{z}=\dfrac{4}{4x}+\dfrac{225}{9y}+\dfrac{1024}{16z}\ge\dfrac{\left(2+15+32\right)^2}{4x+9y+6z}=49\)

Bài 1: Cho x,y, z > 0 thỏa mãn xyz = 1. Chứng minh rằng: \(\dfrac{\sqrt{1+x^3+y}^3}{xy}\)+ \(\dfrac{\sqrt{1+x^3+z^3}}{xz}\)+ \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\) ≥ \(3\sqrt{3}\) Bài 2: Choa, b, c,d > 0 thỏa mãn abcd = 1. CMR: 1) \(\dfrac{a^3}{c^6}\)+ \(\dfrac{c^3}{a^6}\)+ \(\dfrac{b^3}{d^6}\)+ \(\dfrac{d^3}{b^6}\) ≥ \(\dfrac{a^2}{c}\)+ \(\dfrac{c^2}{a}+\dfrac{b^2}{d}+\dfrac{d^2}{b}\) 2) \(\dfrac{a^5b^4}{c^{13}}\) + \(\dfrac{b^5c^4}{d^{13}}\) + \(\dfrac{c^5d^4}{a^{13}}\)+...
Đọc tiếp

Bài 1: Cho x,y, z > 0 thỏa mãn xyz = 1.

Chứng minh rằng:

\(\dfrac{\sqrt{1+x^3+y}^3}{xy}\)+ \(\dfrac{\sqrt{1+x^3+z^3}}{xz}\)+ \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\)\(3\sqrt{3}\)

Bài 2: Choa, b, c,d > 0 thỏa mãn abcd = 1. CMR:

1) \(\dfrac{a^3}{c^6}\)+ \(\dfrac{c^3}{a^6}\)+ \(\dfrac{b^3}{d^6}\)+ \(\dfrac{d^3}{b^6}\)\(\dfrac{a^2}{c}\)+ \(\dfrac{c^2}{a}+\dfrac{b^2}{d}+\dfrac{d^2}{b}\)

2) \(\dfrac{a^5b^4}{c^{13}}\) + \(\dfrac{b^5c^4}{d^{13}}\) + \(\dfrac{c^5d^4}{a^{13}}\)+ \(\dfrac{d^5a^4}{b^{13}}\)\(\dfrac{ab^2}{c^3}+\dfrac{bc^2}{d^3}+\dfrac{cd^2}{a^3}\)+ \(\dfrac{da^2}{b^3}\)

Bài 3: Cho a, b,c ,d > 0. CMR:

\(\dfrac{a^2}{b^5}+\dfrac{b^2}{c^5}+\dfrac{c^2}{d^5}+\dfrac{d^2}{a^5}\)\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+\dfrac{1}{d^3}\)

Bài 4: tìm giá trị nhỏ nhất của biểu thức:

A= x + y biết x, y > 0 thỏa mãn \(\dfrac{2}{x}+\dfrac{3}{y}\) = 1

B= \(\dfrac{ab}{a^2+b^2}\) + \(\dfrac{a^2+b^2}{ab}\) với a, b > 0

Bài 5: Với x > 0, chứng minh rằng:

( x+2 )2 + \(\dfrac{2}{x+2}\) ≥ 3

Giúp mk với, mai mk phải kiểm tra rồi!!

4
AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Câu 1:

Áp dụng BĐT Cauchy:

\(1+x^3+y^3\geq 3\sqrt[3]{x^3y^3}=3xy\)

\(\Rightarrow \frac{\sqrt{1+x^3+y^3}}{xy}\geq \frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)

Hoàn toàn tương tự:

\(\frac{\sqrt{1+y^3+z^3}}{yz}\geq \sqrt{\frac{3}{yz}}; \frac{\sqrt{1+z^3+x^3}}{xz}\geq \sqrt{\frac{3}{xz}}\)

Cộng theo vế các BĐT thu được:

\(\text{VT}\geq \sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\geq 3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\) (Cauchy)

Ta có đpcm

Dấu bằng xảy ra khi $x=y=z=1$

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Câu 4:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{2}{x}+\frac{3}{y}\right)(x+y)\geq (\sqrt{2}+\sqrt{3})^2\)

\(\Leftrightarrow 1.(x+y)\geq (\sqrt{2}+\sqrt{3})^2\Rightarrow x+y\geq 5+2\sqrt{6}\)

Vậy \(A_{\min}=5+2\sqrt{6}\)

Dấu bằng xảy ra khi \(x=2+\sqrt{6}; y=3+\sqrt{6}\)

------------------------------

Áp dụng BĐT Cauchy:

\(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\geq 2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)

\(a^2+b^2\geq 2ab\Rightarrow \frac{3(a^2+b^2)}{4ab}\geq \frac{6ab}{4ab}=\frac{3}{2}\)

Cộng theo vế hai BĐT trên:

\(\Rightarrow B\geq 1+\frac{3}{2}=\frac{5}{2}\) hay \(B_{\min}=\frac{5}{2}\). Dấu bằng xảy ra khi $a=b$

7 tháng 11 2017

a) \(\dfrac{5+x}{4-x}=\dfrac{1}{2}\)

\(\Leftrightarrow2\left(5+x\right)=4-x\)

\(\Leftrightarrow2\left(5+x\right)-\left(4-x\right)=0\)

\(\Leftrightarrow10+2x-4+x=0\)

\(\Leftrightarrow6+3x=0\)

\(\Leftrightarrow3x=-6\)

\(\Leftrightarrow x=-2\)

Vậy x=-2

b) \(\dfrac{25}{14}=\dfrac{x+7}{x-4}\)

\(\Leftrightarrow25\left(x-4\right)=14\left(x+7\right)\)

\(\Leftrightarrow25\left(x-4\right)-14\left(x+7\right)=0\)

\(\Leftrightarrow25x-100-14x-98=0\)

\(\Leftrightarrow11x-198=0\)

\(\Leftrightarrow11x=198\)

\(\Leftrightarrow x=18\)

Vậy x=18

c) \(\dfrac{3x-5}{x+4}=\dfrac{5}{2}\)

\(\Leftrightarrow2\left(3x-5\right)=5\left(x+4\right)\)

\(\Leftrightarrow2\left(3x-5\right)-5\left(x+4\right)=0\)

\(\Leftrightarrow6x-10-5x-20=0\)

\(\Leftrightarrow x-30=0\)

\(\Leftrightarrow x=30\)

Vậy x=30

d) \(\dfrac{3x-1}{2x+1}=\dfrac{3}{7}\)

\(\Leftrightarrow7\left(3x-1\right)=3\left(2x+1\right)\)

\(\Leftrightarrow7\left(3x-1\right)-3\left(2x+1\right)=0\)

\(\Leftrightarrow21x-7-6x-3=0\)

\(\Leftrightarrow15x-10=0\)

\(\Leftrightarrow15x=10\)

\(\Leftrightarrow x=\dfrac{10}{15}=\dfrac{2}{3}\)

Vậy \(x=\dfrac{2}{3}\)

=>-1/2x+2/3=28/15:(-5/7)=-196/75

=>-1/2x=-82/25

=>x=164/25