Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a, \(\frac{1}{-16}-\frac{3}{45}=\frac{-1}{16}-\frac{1}{15}\)
\(=\frac{-15}{240}-\frac{16}{240}\)
\(=\frac{-31}{240}\)
b, \(=\frac{-10}{12}-\frac{-12}{12}\)
\(=\frac{2}{12}=\frac{1}{6}\)
c, \(=\frac{-30}{6}-\frac{1}{6}\)
\(=\frac{-31}{6}\)
Bài 2:
a, \(x=-\frac{1}{2}-\frac{3}{4}\)
\(x=-\frac{1}{4}\)
b, \(\frac{1}{2}+x=-\frac{11}{2}\)
\(x=-\frac{11}{2}-\frac{1}{2}\)
\(x=-6\)
Bạn nhớ k đúng và chọn câu trả lời này nhé!!!! Mình giải đúng và chính xác hết ^_^
a) \(\frac{31}{23}-\left(\frac{7}{32}+\frac{8}{23}\right)=\frac{31}{23}-\frac{7}{32}-\frac{8}{23}=1-\frac{7}{32}=\frac{25}{32}\)
b) \(\left(\frac{1}{3}+\frac{12}{67}+\frac{13}{41}\right)-\left(\frac{79}{67}-\frac{28}{41}\right)\)
\(=\frac{1}{3}+\frac{12}{67}+\frac{13}{41}-\frac{79}{67}+\frac{28}{41}\)
\(=\frac{1}{3}-\left(\frac{79}{67}-\frac{12}{67}\right)+\left(\frac{13}{41}+\frac{28}{41}\right)\)
\(=\frac{1}{3}-1+1=\frac{1}{3}\)
d) \(\frac{1}{7}.\frac{1}{3}+\frac{1}{7}.\frac{-1}{3}+\frac{17}{19}=\frac{1}{7}.\left(\frac{1}{3}-\frac{1}{3}\right)+\frac{17}{19}=\frac{17}{19}\)
e) \(\frac{3}{5}.\frac{7}{9}+\frac{7}{5}.\frac{2}{9}=\frac{7}{5}.\left(\frac{3}{9}+\frac{2}{9}\right)=\frac{7}{5}.\frac{5}{9}=\frac{7}{9}\)
1)
\(=\frac{1}{3}+\frac{12}{67}+\frac{13}{41}-\frac{79}{67}+\frac{28}{41}\)
\(=\frac{1}{3}+\left(\frac{12}{67}-\frac{79}{67}\right)+\left(\frac{13}{41}+\frac{28}{41}\right)=\frac{1}{3}+\left(-1\right)+1=\frac{1}{3}\)
Sửa đề chút nha
\(\frac{x}{2}=\frac{1}{1.2.3}+....+\frac{1}{98.99.100}\)
Ta có công thức tổng quát \(\frac{1}{a\left(a+1\right)\left(a+2\right)}=\frac{1}{2}\left(\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\right)\)
\(\Rightarrow\frac{2}{a\left(a+1\right)\left(a+2\right)}=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)
Áp dụng vào tổng ta có
\(\frac{x}{2}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{98.99}-\frac{1}{99.100}=\frac{1}{2}-\frac{1}{99.100}=\frac{4949}{9900}\)
\(\Rightarrow x=\frac{4949}{4950}\)
Trả lời
b)(1/3+12/67+13/41)-(79/67-28/41)
=1/3+12/67+13/41-79/67+28/41
=1/3+(12/67-79/67)+(13/41+28/41)
=1/3+(-67/67)+41/41
=1/3+(-1)+1
=1/3+0
=1/3.
Bài 1:
a)\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(=1-\frac{1}{2017}\)
\(=\frac{2016}{2017}\)
b)\(=1008\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(=1008\cdot\left(1-\frac{1}{2017}\right)\)
Bài 2:
a)\(A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\)
\(=\frac{1}{3}-\frac{1}{21}\)
\(=\frac{2}{7}\)
b)\(B=\frac{5}{28}+\frac{5}{70}+...+\frac{5}{700}\)
\(=\frac{5}{4.7}+\frac{5}{7.10}+...+\frac{5}{25.28}\)
\(=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{28}\right)\)
\(=\frac{5}{3}\cdot\frac{6}{28}\)
\(=\frac{15}{14}\)
Bài 3:
a)Đặt \(A=-\frac{20}{11.13}-\frac{20}{13.15}-...-\frac{20}{53.55}\)
\(=-\left(\frac{20}{11.13}+\frac{20}{13.15}+...+\frac{20}{53.55}\right)\)
\(=-\left[10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{53}-\frac{1}{55}\right)\right]\)
\(=-\left[10\left(\frac{1}{11}-\frac{1}{55}\right)\right]\)
\(=-\left[10\cdot\frac{4}{55}\right]\)
\(=-\frac{8}{11}\).Thay vào ta có: \(x-\frac{8}{11}=\frac{2}{9}\)
\(\Leftrightarrow x=\frac{94}{99}\)
b)\(\frac{2}{42}+\frac{2}{56}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(2\left(\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{9}\)
\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{x+1}=\frac{1}{18}\)
\(x+1=18\)
\(x=17\)
Bài 1 mik học xong quên hết òi (mấy bài kia là hok biết luôn :V)
a) \(\frac{31}{23}-\left(\frac{7}{23}+\frac{8}{23}\right)\)
\(=\frac{31}{23}-\frac{15}{23}\)
\(=\frac{16}{23}\)
b) \(\left(\frac{1}{3}+\frac{12}{67}+\frac{13}{41}\right)-\left(\frac{79}{67}-\frac{28}{41}\right)\)
\(=\frac{1}{3}+\frac{12}{67}+\frac{13}{41}-\frac{79}{67}+\frac{28}{41}\)
\(=\frac{1}{3}+\left(\frac{12}{67}-\frac{79}{67}\right)+\left(\frac{13}{41}+\frac{28}{41}\right)\)
\(=\frac{1}{3}+\frac{-67}{67}+\frac{41}{41}\)
\(=\frac{1}{3}-1+1\)
\(=\frac{1}{3}\)
c) \(\frac{38}{45}-\left(\frac{8}{45}-\frac{17}{52}-\frac{3}{11}\right)\)
\(=\frac{38}{45}-\frac{8}{45}+\frac{17}{52}+\frac{3}{11}\)
\(=\frac{30}{45}+\frac{17}{52}+\frac{3}{11}\)
\(=\frac{2}{3}+\frac{17}{52}+\frac{3}{11}\)
\(=\frac{104+51}{156}+\frac{3}{11}\)
\(=\frac{155}{156}+\frac{3}{11}\)
\(=\frac{156}{156}-\frac{1}{156}+\frac{3}{11}\)
\(=1-\frac{1}{156}+\frac{3}{11}\)
\(=1-\left(\frac{11-468}{1716}\right)\)
\(=1-\frac{-457}{1716}\)
\(=1+\frac{457}{1716}\)
\(=\frac{2173}{1716}\)
a)31/23-(7/32+8/23)=31/23-7/32-8/23=(31/23-8/23)-7/32=1-7/32=25/32
a)\(A=\frac{31}{23}-\left(\frac{7}{32}+\frac{8}{2}\right)vaB=\left(\frac{1}{3}+\frac{12}{67}+\frac{13}{41}\right)-\left(\frac{79}{67}-\frac{28}{41}\right)\)
+)Ta có:\(A=\frac{31}{23}-\left(\frac{7}{32}+\frac{8}{2}\right)\)
\(\Leftrightarrow A=\frac{31}{23}-\left(\frac{7}{32}+\frac{128}{32}\right)\)
\(\Leftrightarrow A=\frac{31}{23}-\frac{135}{32}\)
\(\Leftrightarrow A=\frac{992}{736}-\frac{3105}{736}\)
\(\Leftrightarrow A=\frac{-2113}{736}\left(1\right)\)
+)Ta lại có:\(B=\left(\frac{1}{3}+\frac{12}{67}+\frac{13}{41}\right)-\left(\frac{79}{67}-\frac{28}{41}\right)\)
\(\Leftrightarrow B=\frac{1}{3}+\frac{12}{67}+\frac{13}{41}-\frac{79}{67}+\frac{28}{41}\)
\(\Leftrightarrow B=\frac{1}{3}+\left(\frac{12}{67}-\frac{79}{67}\right)+\left(\frac{13}{41}+\frac{28}{41}\right)\)
\(\Leftrightarrow B=\frac{1}{3}+\frac{-67}{67}+\frac{41}{41}\)
\(\Leftrightarrow B=\frac{1}{3}+\left(-1\right)+1\)
\(\Leftrightarrow B=\frac{1}{3}\left(2\right)\)
+)Từ (1) và (2)
\(\Leftrightarrow A< 0< B\Leftrightarrow A< B\)
Vậy A<B
b)\(\frac{200420042004}{200520052005}va\frac{2004}{2005}\)
+)Ta có \(\frac{200420042004}{200520052005}=\frac{2004.100010001}{2005.100010001}=\frac{2004}{2005}\)
\(\Leftrightarrow\frac{200420042004}{200520052005}=\frac{2004}{2005}\)
c)\(C=\frac{2020^{2006}+1}{2020^{2007}+1}vaD=\frac{2020^{2005}+1}{2020^{2006}+1}\)
\(C=\frac{2020^{2006}+1}{2020^{2007}+1}< 1\)
\(\Leftrightarrow C< \frac{2020^{2006}+1+2019}{2020^{2007}+1+2019}=\frac{2020^{2006}+2020}{2020^{2007}+2020}=\frac{2020.\left(2020^{2005}+1\right)}{2020.\left(2020^{2006}+1\right)}=\frac{2020^{2005}+1}{2020^{2006}+1}\)
\(\Leftrightarrow C< D\)
Chúc bạn học tốt