Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}+\frac{16^3.3^{10}+120.6^9}{4^6.3^{12}+6^{12}}\)
\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{\left(2^4\right)^3.3^{10}+2^3.3.5.\left(2.3\right)^9}{\left(2^2\right)^6.3^{12}+\left(2.3\right)^{12}}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6-2^{12}.3^5}-\frac{2^{12}.3^{10}-2^3.3.5.2^9.3^9}{2^{12}.3^{12}+2^{12}.3^{12}}\)
\(=\frac{2^{12}.\left(3^5-3^4\right)}{2^{12}.\left(3^6-3^5\right)}-\frac{2^{12}.3^{10}-2^{12}.3^{10}.5}{2^{12}.3^{12}+2^{12}.3^{12}}\)
\(=\frac{3^5-3^4}{3^6-3^5}-\frac{2^{12}.3^{10}.\left(1-5\right)}{2^{13}.3^{12}}\)
\(=\frac{162}{486}-\frac{2^{12}.3^{10}.\left(-4\right)}{2^{13}.3^{10}.3^2}=\frac{1}{3}-\frac{2^{14}.3^{10}.\left(-1\right)}{2^{13}.3^{10}.9}\)
\(=\frac{1}{3}-\frac{2.1.\left(-1\right)}{1.1.9}=\frac{1}{3}-\frac{2}{9}=\frac{1}{9}\)
f) \(\left(1:\frac{1}{7}\right)^2\left[\left(2^2\right)^3:2^5\right]\cdot\frac{1}{49}\)
\(=\left(1\cdot7\right)^2:\left(2^6:2^5\right)\cdot\frac{1}{49}=7^2\cdot\frac{1}{2}\cdot\frac{1}{49}=49\cdot\frac{1}{49}\cdot\frac{1}{2}=\frac{1}{2}\)
g) \(\frac{4^6\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot9^3+8^4\cdot3^5}=\frac{\left(2^2\right)^6\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot\left(3^2\right)^3+\left(2^3\right)^4\cdot3^5}\)
\(=\frac{2^{12}\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot3^6+2^{12}\cdot3^5}=\frac{2^{12}\left(3^5-3^6\right)}{2^{12}\left(3^6+3^5\right)}=\frac{2^{12}\left[3^5\left(1-3\right)\right]}{2^{12}\left[3^5\left(3+1\right)\right]}=\frac{2^{12}\cdot3^5\cdot\left(-2\right)}{2^{12}\cdot3^5\cdot4}=\frac{-2}{4}=-\frac{1}{2}\)
Bài giải
\(f,\text{ }\left(1\text{ : }\frac{1}{7}\right)^2\left[\left(2^2\right)^3\text{ : }2^5\right]\cdot\frac{1}{49}\)
\(=7^2\left(2^6\text{ : }2^5\right)\cdot\frac{1}{7^2}\)
\(=2\)
\(g,\text{ }\frac{4^6\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot9^3+8^4\cdot3^5}=\frac{2^{12}\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot3^6+2^{12}\cdot3^5}=\frac{2^{12}\cdot3^5\cdot\left(1-3\right)}{2^{12}\cdot3^5\cdot\left(3+1\right)}=-\frac{2}{4}=-\frac{1}{2}\)
eo ôi t làm rồi mà bị xoá :v thôi t hướng dẫn :v
Tạc TS và MS ra rồi gộp và triệt tiêu :) nếu k lm đc ibx t làm cho :)
Các bạn ơi, giúp mình giải bài này với. Mình đang cần gấp!!!!!
\(\frac{2^{12}\cdot3^5-\left(2^2\right)^6.3^5.3}{2^{12}.\left(3^2\right)^3+\left(2^3\right)^4.3^5}\)
=\(\frac{2^{12}\cdot3^5-2^{12}.3^5.3}{2^{12}.3^5+2^{12}.3^5}\)
=3
\(B=\frac{2^{12}.3^5-4^6.3^6}{2^{12}.9^3+8^4.3^5}=\frac{2^{12}.3^5-\left(2^2\right)^6.3^6}{2^{12}.\left(3^2\right)^3+\left(2^3\right)^4.3^5}=\frac{2^{12}.3^5-2^{12}.3^6}{2^{12}.3^6+2^{12}.3^5}=\frac{2^{12}.\left(3^5-3^6\right)}{2^{12}.\left(3^6+3^5\right)}=\frac{3^5-3^6}{3^6+3^5}=\frac{3^5.\left(1-3\right)}{3^5.\left(3+1\right)}=\frac{1-3}{3+1}=-\frac{2}{4}=-\frac{1}{2}\)