\(=\) 4y và x \(+y=9\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

Bài 1:

\(5x=4y\Leftrightarrow\frac{x}{4}=\frac{y}{5}\)

Áp tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{9}{9}=1\)

Do đó: \(\frac{x}{4}=1\Rightarrow x=4\)

\(\frac{y}{5}=1\Rightarrow y=5\)

Vậy: x = 4, y = 5.

5 tháng 4 2020

Bài 1:

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{9}=\frac{y}{6}=\frac{y-x}{6-9}=\frac{-3}{-3}=1\)

Do đó: \(\frac{x}{9}=1\Rightarrow x=9\)

\(\frac{y}{6}=1\Rightarrow y=6\)

Vậy: x = 9, y = 6.

bài 2:

gọi độ dài mỗi cạnh của tam giác lần lượt là a,b,c tỉ lệ với 5;7;4

theo đề ta có: \(\frac{a}{5}=\frac{b}{7}=\frac{c}{4}\) và a + b + c = 64

áp dụng t/c DTSBN ta có:

\(\frac{a}{5}=\frac{b}{7}=\frac{c}{4}=\frac{a+b+c}{5+7+4}=\frac{64}{16}=4\)

=> \(\hept{\begin{cases}\frac{a}{5}=4\\\frac{b}{7}=4\\\frac{c}{4}=4\end{cases}}\)

=> \(\hept{\begin{cases}a=20\\b=28\\c=16\end{cases}}\)

vậy độ dài mỗi cạnh của tam giác lần lượt là 20cm ; 28cm ; 16cm

chúc bạn học tốt!!! ^^

546456546544575678456457467684594262645654745745756756756856856454564563463

16 tháng 9 2016

bạn ơi còn bài 1

23 tháng 10 2020

Bài 1 : Xin thôi ạ , bài dài quá . Bài này chỉ cần nhân tích chéo hoặc áp dụng tính chất của dãy tỉ số bằng nhau là ra .

Bài 2: 

Gọi độ dài 3 cạnh của tam giác lần lượt là a , b , c ( a , b ,c > 0 ) ( cm )

Theo bài ra , ta có :

\(\hept{\begin{cases}a+b+c=45\\\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\end{cases}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{45}{9}=5\)

\(\Rightarrow\hept{\begin{cases}a=5.2=10\\b=5.3=15\\c=5.4=20\end{cases}}\)

Vậy độ dài 3 cạnh của tam giác đó lần lượt là : 10 cm ; 15 cm ; 20 cm

23 tháng 10 2020

ỦA bài 1 nói vậy thì tui làm được lâu rồi à

9 tháng 11 2016

1)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow ac-ad=ac-bc\Leftrightarrow a\left(c-d\right)=c\left(a-b\right)\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

2) Gọi độ dài các cạnh của tam giác đó là a,b,c thì a : b : c = 3 : 4 : 5 ; a + b + c = 36

\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\Rightarrow\hept{\begin{cases}a=3.3=9\\b=3.4=12\\c=3.5=15\end{cases}}\).Vậy tam giác đó có 3 cạnh là 9 cm ; 12 cm ; 15 cm

3)\(\hept{\begin{cases}a:b:c:d=3:4:5:6\\a+b+c+d=3,6\end{cases}\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{d}{6}=\frac{a+b+c+d}{3+4+5+6}=\frac{3,6}{18}=0,2}\)

=> a = 0,2.3 = 0,6 ; b = 0,2.4 = 0,8 ; c = 0,2.5 = 1 ; d = 0,2.6 = 1,2

4)\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{3}:5=\frac{y}{2}:5\Leftrightarrow\frac{x}{15}=\frac{y}{10}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}:2=\frac{z}{7}:2\Leftrightarrow\frac{y}{10}=\frac{z}{14}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{14}=\frac{x+y+z}{15+10+14}=\frac{184}{39}=4\frac{28}{39}\Rightarrow\hept{\begin{cases}x=4\frac{28}{39}.15=70\frac{10}{13}\\y=4\frac{28}{39}.10=47\frac{7}{39}\\z=4\frac{28}{39}.14=66\frac{2}{39}\end{cases}}\)

9 tháng 11 2016

câu 3,4 bạn làm tỉ lệ thức là xong

1.Tìm x,biết:a,\(3^x+3^{x+2}=270\)b,\(x.\left(\frac{1}{3}\right)^0+\frac{2}{5}.\left(x+1\right)=0\)c,\(3x^2=27\)d,\(1,25-\left|0,5-x\right|=0\)2.Tìm x trong tỉ lệ thức:e,\(\frac{2}{3}x:\frac{1}{5}=1\frac{1}{3}:\frac{1}{4}\)g,\(2\frac{2}{3}:x=1\frac{7}{9}:0,02\)h,\(\frac{8}{3}:x=\frac{16}{9}:\frac{2}{100}\)i,\(\frac{-2}{3}+\frac{4}{5}:x=\frac{2}{3}\)3.Áp dụng tính chất dãy tỉ số bằng nhau để tìm x.Tìm x,y,z...
Đọc tiếp

1.Tìm x,biết:
a,\(3^x+3^{x+2}=270\)
b,\(x.\left(\frac{1}{3}\right)^0+\frac{2}{5}.\left(x+1\right)=0\)
c,\(3x^2=27\)
d,\(1,25-\left|0,5-x\right|=0\)
2.Tìm x trong tỉ lệ thức:
e,\(\frac{2}{3}x:\frac{1}{5}=1\frac{1}{3}:\frac{1}{4}\)
g,\(2\frac{2}{3}:x=1\frac{7}{9}:0,02\)
h,\(\frac{8}{3}:x=\frac{16}{9}:\frac{2}{100}\)
i,\(\frac{-2}{3}+\frac{4}{5}:x=\frac{2}{3}\)
3.Áp dụng tính chất dãy tỉ số bằng nhau để tìm x.Tìm x,y,z biết:
a,\(\frac{x}{2}=\frac{y}{3}=\frac{z}{3},x-2y+z=-10\)
b,\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4},x-2y+3z=14\)
4.Một miếng đất hCN có chu vi là 70m và 2 cạnh của nó tỉ lệ với 3 và 4.TÍnh S của miếng đất đó?
5.Tính số đo góc A của tam giác ABC biết số các góc A,B,C của tam giác đó tỉ lệ với 3;5;7
6.Ba người A,B,C góp vốn kinh doanh theo tỉ lệ 3,5,7.Biết tổng số vốn của 3 người là 105 triệu đồng.Hỏi số tiền góp vốn của mỗi người là bao nhiêu?
7.Số h/s giỏi,khá,trung bình của khối 7 lần lượt tỉ lệ với 3,5,7.TÍnh số h/s khá,giỏi,trung bình của khối 7,biết tổng số h/s khá và trung bình hơn h/s giỏi là 180 em

P/s:Bài 4,5,6,7 là dùng chia tỉ lệ,tỉ lệ thuận

1
18 tháng 12 2016

nhìu zậy !

 

Bài 1: Tìm x, y, z biết: a. \(8x=3y\); \(5y=6z\) và \(2x+y-z=-34\)b. \(6^{x+1}-200\cdot6^{x-1}=360\) \(\left(x\in N,x\ge2\right)\)c. \(3^x+4^x=5^x\left(x\in N\right)\)d. \(\frac{x-5}{7}=\frac{2y+3}{5}=z+19\) và \(x+y=z\)e. \(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}\) và \(x^6\cdot y^6=64\)g. \(\left(x^3-5\right)\left(x^3-10\right)\left(x^3-30\right)< 0\left(x\in Z\right)\)Bài 2: a. Chứng minh...
Đọc tiếp

Bài 1: Tìm x, y, z biết: 

a. \(8x=3y\)\(5y=6z\) và \(2x+y-z=-34\)

b. \(6^{x+1}-200\cdot6^{x-1}=360\) \(\left(x\in N,x\ge2\right)\)

c. \(3^x+4^x=5^x\left(x\in N\right)\)

d. \(\frac{x-5}{7}=\frac{2y+3}{5}=z+19\) và \(x+y=z\)

e. \(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}\) và \(x^6\cdot y^6=64\)

g. \(\left(x^3-5\right)\left(x^3-10\right)\left(x^3-30\right)< 0\left(x\in Z\right)\)

Bài 2: 

a. Chứng minh rằng: \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2011^2}>\frac{1}{2011}\)

b. Cho \(\left(5a_1+7b_1\right)^{2010}+\left(5a_2+7b_2\right)^{2012}+\left(5a_3+7b_3\right)^{2014}\le0\) và \(b_1,b_2,b_3\ne0,b_1+b_2+b_3\ne0\) . Chứng minh rằng: \(\frac{a_1+a_2+a_3}{b_1+b_2+b_3}=-1\frac{2}{5}\)

Bài 3: 

a. Cho \(\frac{x}{y}=\frac{z}{t}\) . Chứng minh rằng \(\frac{x^2-y^2}{z^2-t^2}=\left(\frac{y-x}{t-z}\right)^2=\frac{xy}{zt}\)

b. Độ dài 3 đường cao của 1 tam giác tỉ lệ với 3; 5; 6. Tính độ dài 3 cạnh tương ứng của tam giác đó, biết rằng chu vi của tam giác là  42cm 

c. Chứng minh rằng \(2^{x+4}-3^x-3^{x+2}-2^x\) chia hết cho 30 với x la số tựu nhiên lớn hơn hoặc bằng 1

 

0
12 tháng 7 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)

\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

Áp dụng tính chất tỉ lệ thức :

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

\(\hept{\begin{cases}\frac{x}{9}=3\\\frac{y}{12}=3\\\frac{z}{20}=3\end{cases}\Rightarrow\hept{\begin{cases}x=27\\y=36\\z=60\end{cases}}}\)

Vậy x = 27; y = 36; z = 60

b) Ta có : \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12x+12y+12z}{18+16+15}=\frac{12\left(x+y+z\right)}{49}=\frac{12.49}{49}=12\)

\(\hept{\begin{cases}\frac{12x}{18}=12\\\frac{12y}{16}=12\\\frac{12z}{15}=12\end{cases}\Rightarrow\hept{\begin{cases}12x=216\\12y=192\\12z=180\end{cases}\Rightarrow}\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}}\)

Vậy x = 18; y = 16; z = 15

12 tháng 7 2019

\(a,\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\)và 2x - 3y + z = 6

Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Leftrightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{12}=\frac{z}{20}\)

\(\Leftrightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

\(\Leftrightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau : \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

Vậy : \(\hept{\begin{cases}\frac{2x}{18}=3\\\frac{3y}{36}=3\\\frac{z}{20}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=27\\y=36\\z=60\end{cases}}\)

\(b,\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x + y + z = 49

Ta có : \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=49\cdot\frac{12}{49}=12\)

Vậy : \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=12\\\frac{y}{\frac{4}{3}}=12\\\frac{z}{\frac{5}{4}}=12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}\)

30 tháng 7 2020

a) Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}\)

\(=\frac{50-5}{9}=\frac{45}{9}=5\)

Từ đó suy ra x = 11,y = 17,z = 23

b)

a) Do x và y là hai đại lượng tỉ lệ thuận và x1,x2 là hai giá trị khác nhau của x;y1,y2 là hai giá trị tương ứng của y nên :

\(\frac{y_1}{x_1}=\frac{y_2}{x_2}\Rightarrow x_1=\frac{y_1x_2}{y_2}=\frac{-\frac{3}{4}\cdot2}{\frac{1}{7}}=-\frac{21}{2}\)

b) Do x và y là hai đại lượng tỉ lệ thuận và x1,x2 là hai giá trị khác nhau của x;y1,y2 là hai giá trị tương ứng của y nên :

\(\frac{y_1}{y_2}=\frac{x_1}{x_2}=\frac{y_1-x_1}{y_2-x_2}\Rightarrow\frac{y_1}{3}=\frac{x_1}{-4}=\frac{y_1-x_1}{3-\left(-4\right)}=-\frac{2}{7}\)

Vậy \(x_1=-4\cdot\frac{-2}{7}=\frac{8}{7};y_1=3\cdot\frac{-2}{7}=\frac{-6}{7}\)

c) Tự làm nhé