Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)\(\left(5x+1\right)^2=\dfrac{36}{49}\)
\(\Leftrightarrow\left(5x+1\right)^2=\left(\dfrac{6}{7}\right)^2=\left(-\dfrac{6}{7}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=-\dfrac{6}{7}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}5x=-\dfrac{1}{7}\\5x=-\dfrac{13}{7}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{35}\\x=-\dfrac{13}{35}\end{matrix}\right.\)
Bài 2:
a)\(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)
Dễ thấy: \(\left\{{}\begin{matrix}x^2\ge0\\\left(y-\dfrac{1}{10}\right)^4\ge0\end{matrix}\right.\)
\(\Rightarrow x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\)
Xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\\left(y-\dfrac{1}{10}\right)^4=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)
b)\(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{40}\le0\)
Dễ thấy: \(\left\{{}\begin{matrix}\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\\left(y^2-\dfrac{1}{4}\right)^{40}\ge0\end{matrix}\right.\)
\(\Rightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{40}\ge0\)
Mà \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{40}\le0\)
Xảy ra khi \(\left\{{}\begin{matrix}\left(\dfrac{1}{2}x-5\right)^{20}=0\\\left(y^2-\dfrac{1}{4}\right)^{40}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=0\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)
Bài 2: a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
\(\Leftrightarrow\left(x-3\right).7=\left(x+5\right).5\)
\(\Leftrightarrow7x-21=5x+25\)
\(\Leftrightarrow7x-5x=21+25\)
\(\Leftrightarrow2x=46\)
\(\Rightarrow x=46:2=23\)
b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)=63\)
\(\Leftrightarrow x^2-1=63\)
\(\Leftrightarrow x^2=64\)
\(\Rightarrow x^2=\left(\pm8\right)^2\)
\(\Rightarrow x=8\) hoặc \(x=-8\)
2)a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
\(\Leftrightarrow7\left(x-3\right)=5\left(x+5\right)\)
\(7x-21=5x+25\)
\(7x-5x+25=21\)
\(2x+25=21\)
\(2x=-4\Rightarrow x=-2\)
b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(7.9=\left(x+1\right)\left(x-1\right)\)
\(63=x\left(x-1\right)+1\left(x-1\right)\)
\(63=x^2-x+x-1\)
\(x^2=63+1=64\)
\(x=\left\{\pm8\right\}\)
c) \(\dfrac{x+4}{20}=\dfrac{2}{x+4}\)
\(\Leftrightarrow\left(x+4\right)\left(x+4\right)=2.20=40\)
\(x\left(x+4\right)+4\left(x+4\right)=40\)
\(x^2+4x+4x+16=40\)
\(x^2+8x=40-16=24\)
\(x\left(x+8\right)=24\)
\(x\in\left\{\varnothing\right\}\)
d) \(\dfrac{x-1}{x+2}=\dfrac{x-2}{x+3}\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=\left(x-1\right)\left(x+3\right)\)
\(x\left(x-2\right)+2\left(x-2\right)=x\left(x+3\right)-1\left(x+3\right)\)
\(x^2-2x+2x-4=x^2+3x-x-3\)
\(\)\(x^2-4=x^2+2x-3\)
\(\Leftrightarrow x^2-x^2-2x+3=4\)
\(-2x+3=4\)
\(-2x=1\)
\(x=-\dfrac{1}{2}\)
Bài 2:
a) \(\left(x-3\right)^3+27=0\)
\(\Leftrightarrow\left(x-3\right)^3=0-27\)
\(\Leftrightarrow\left(x-3\right)^3=-27\)
\(\Leftrightarrow\left(x-3\right)^3=\left(-3\right)^3\)
\(\Leftrightarrow x-3=-3\)
\(\Leftrightarrow x=\left(-3\right)+3\)
\(\Leftrightarrow x=0\)
b) \(-125-\left(x+1\right)^3=0\)
\(\Leftrightarrow\left(x+1\right)^3=-125-0\)
\(\Leftrightarrow\left(x+1\right)^3=-125\)
\(\Leftrightarrow\left(x+1\right)^3=\left(-5\right)^3\)
\(\Leftrightarrow x+1=-5\)
\(\Leftrightarrow x=\left(-5\right)-1\)
\(\Leftrightarrow x=-6\)
c) \(\left(2x-\dfrac{1}{4}\right)^2-\dfrac{1}{16}=0\)
\(\Leftrightarrow\left(2x-\dfrac{1}{4}\right)^2=0+\dfrac{1}{16}\)
\(\Leftrightarrow\left(2x-\dfrac{1}{4}\right)^2=\dfrac{1}{16}\)
\(\Leftrightarrow\left(2x-\dfrac{1}{4}\right)^2=\left(\dfrac{1}{4}\right)^2\)
\(\Leftrightarrow2x-\dfrac{1}{4}=\dfrac{1}{4}\)
\(\Leftrightarrow2x=\dfrac{1}{4}+\dfrac{1}{4}\)
\(\Leftrightarrow2x=\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{1}{2}:2\)
\(\Leftrightarrow x=\dfrac{1}{4}\)
d) \(2^x+2^{x+1}=24\)
\(\Leftrightarrow2^x+2^x.2=24\)
\(\Leftrightarrow2^x\left(1+2\right)=24\)
\(\Leftrightarrow2^x.3=24\)
\(\Leftrightarrow2^x=24:3\)
\(\Leftrightarrow2^x=8\)
\(\Leftrightarrow2^x=2^3\)
\(\Rightarrow x=3\)
e) \(\left|x+\dfrac{1}{5}\right|-\dfrac{1}{2}=1\)
\(\Leftrightarrow\left|x+\dfrac{1}{5}\right|=1+\dfrac{1}{2}\)
\(\Leftrightarrow\left|x+\dfrac{1}{5}\right|=\dfrac{3}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{5}=-\dfrac{3}{2}\\x+\dfrac{1}{5}=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{17}{10}\\x=\dfrac{13}{10}\end{matrix}\right.\)
g) \(\left|x-3\right|+2x=10\)
\(\Leftrightarrow\left|x-3\right|=10-2x\)
\(\Leftrightarrow\left|x-3\right|=2.5-2x\)
\(\Leftrightarrow\left|x-3\right|=2\left(5-x\right)\)
(không chắc có nên làm tiếp câu g không, thấy đề cứ là lạ, có j sai sai...)
Bài 1:
a) \(2^7+2^9⋮10\)
Ta có: \(2^7+2^9=2^{4.1}.2^3+2^{4.2}.2\)
\(\Leftrightarrow\overline{A6}.2^3+\overline{B6}.2\)
\(\Leftrightarrow\overline{A6}.8+\overline{B6}.2\)
\(\Leftrightarrow\overline{C8}+\overline{D2}\)
\(\Leftrightarrow\overline{E0}\)
Mà \(\overline{E0}⋮10\) \(\Rightarrow2^7+2^9⋮10\)
b) \(8^{24}.25^{10}⋮2^{36}.5^{20}\)
Ta có: \(8^{24}.25^{10}=\left(2^3\right)^{24}.\left(5^2\right)^{10}\)
\(\Leftrightarrow2^{72}.5^{20}\)
Do \(2^{72}⋮2^{36}\) và \(5^{20}⋮5^{20}\) \(\Rightarrow8^{24}.25^{10}⋮2^{36}.5^{20}\)
c) \(3^{10}+3^{12}⋮30\)
Ta có: \(3^{10}+3^{12}=3^{4.2}.3^2+3^{4.3}\)
\(\Leftrightarrow\overline{A1}.3^2+\overline{B1}\)
\(\Leftrightarrow\overline{A1}.9+\overline{B1}\)
\(\Leftrightarrow\overline{C9}+\overline{B1}\)
\(\Leftrightarrow\overline{D0}⋮10\)
(Chứng minh chia hết cho 10 rồi chứng minh chia hết cho 3, mình chưa tìm được cách làm, chờ chút)
a) 3x - 2 = 0 => 3x = 2 => x = 2/3
b) 2x - 1 = 0 => 2x = 1 => x = 1/2
c) 5 ( 4+2x) = 8+5x
<=> 20 + 10x = 8 + 5x
<=> 10x - 5x = 8 - 20
<=> 5x = -12
x = -12/5
d) \(\frac{1}{2}+\frac{3}{4}x=6-\frac{4}{5}x\)
\(\frac{3}{4}x+\frac{4}{5}x=6-\frac{1}{2}\)
\(\frac{31}{20}x=\frac{11}{2}\)
\(x=\frac{11}{2}:\frac{31}{20}=\frac{110}{31}\)
e) 3 + 2x = 4 - 8x
<=> 2x + 8x = 4 - 3
10 x = 1
x = 1/10
f \(5+\frac{1}{2}\left(x+5\right)=3\)
\(\frac{1}{2}\left(x+5\right)=3-5=-2\)
\(x+5=-2:\frac{1}{2}=-4\)
\(x=-4-5=1\)
Vậy ......
tung từng vế một thôi
bạn nhác quá éo chịu suy nghĩ
bài này dễ vl
Bài 1:
a, \(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right)\left(5x+6\right)}=\frac{2010}{2011}\)
\(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2010}{2011}\)
\(1-\frac{1}{5x+6}=\frac{2010}{2011}\)
\(\frac{1}{5x+6}=1-\frac{2010}{2011}\)
\(\frac{1}{5x+6}=\frac{1}{2011}\)
=> 5x + 6 = 2011
5x = 2011 - 6
5x = 2005
x = 2005 : 5
x = 401
b, \(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\frac{7}{x}=\frac{29}{45}-\frac{8}{45}\)
\(\frac{7}{x}=\frac{7}{15}\)
=> x = 15
c, ghi lại đề
d, ghi lại đề
Bài 2:
\(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)
a)<=>\(\dfrac{\left(2x-3\right).2}{6}-\dfrac{3.3}{6}=\dfrac{5-2x}{6}-\dfrac{1.3}{6}\)
<=>\(\dfrac{4x-6}{6}-\dfrac{9}{6}=\dfrac{5-2x}{6}-\dfrac{3}{6}\)
<=>\(\dfrac{4x-6}{6}-\dfrac{9}{6}-\dfrac{5-2x}{6}+\dfrac{3}{6}=0\)
<=>\(\dfrac{4x-6-9-5+2x+3}{6}=\dfrac{4x-17}{6}=0\)
<=>\(4x-17=0\)
<=>\(4x=17\)<=>\(x=\dfrac{17}{4}\)
`(5x+1)=36/49`
`<=> 5x = 36/49-1`
`<=> 5x = -13/49`.
`<=> x = -13/245.`
Vậy `x = -13/245`.
`b, x-2/9 = 2/3`.
`<=> x = 2/3 + 2/9`
`<=> x = 8/9`.
Vậy `x = 8/9`.
c: (8x-1)^(2x+1)=5^(2x+1)
=>8x-1=5
=>8x=6
=>x=3/4
d: Sửa đề: (x-3,5)^2+(y-1/10)^4=0
=>x-3,5=0 và y-0,1=0
=>x=3,5 và y=0,1