Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a, Đặt \(A=\left|2x-\frac{1}{5}\right|+2017\)
Để A đạt GTNN thì \(\left|2x-\frac{1}{5}\right|\)đạt GTNN
Mà \(\left|2x-\frac{1}{5}\right|\ge0\)
Do đó \(\left|2x-\frac{1}{5}\right|=0\)thì A đạt GTNN tức là A = 0 + 2017 = 2017 khi
\(2x-\frac{1}{5}=0=>2x=0+\frac{1}{5}=\frac{1}{5}=>x=\frac{1}{5}.\frac{1}{2}=\frac{1}{10}\)
b, Đặt \(B=\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|\)
Ta thấy \(\frac{1}{2}>\frac{1}{3}>\frac{1}{4}=>x+\frac{1}{2}>x+\frac{1}{3}>x+\frac{1}{4}\)
Do đó để B đạt GTNN thì \(x+\frac{1}{2}\)đạt GTNN
mà \(x+\frac{1}{2}\ge0\)
Từ 2 điều trên => \(x+\frac{1}{2}=0=>x=-\frac{1}{2}\)
Khi đó \(x+\frac{1}{3}=-\frac{1}{2}+\frac{1}{3}=-\frac{1}{6}\)
và \(x+\frac{1}{4}=-\frac{1}{2}+\frac{1}{4}=-\frac{1}{4}\)
Vậy GTNN của \(B=\left|0\right|+\left|-\frac{1}{6}\right|+\left|-\frac{1}{4}\right|=0+\frac{1}{6}+\frac{1}{4}=\frac{10}{24}\)khi x = -1/2
Phần b này thì mình không chắc lắm bạn tự xem lại nhé
Bài 1:
\(M=\frac{2017}{11-x}\)đạt GTLN <=> 11 - x đạt GTNN và 11 - x > 0 (nếu không thì M đạt giá trị âm (vô lí))
=> 11 - x = 1
=> x = 10
Vậy x = 10 thì M đạt GTLN tức là bằng \(\frac{2017}{1}=2017\)
a)\(\frac{27}{3^{n+1}}=3^2\Leftrightarrow\frac{27}{3^{n+1}}=9\)
\(\Leftrightarrow3^{n+1}=27\div9\)
\(\Leftrightarrow3^{n+1}=3\)
\(\Leftrightarrow3^{n+1}=3^1\)
\(\Leftrightarrow n+1=1\)
\(\Rightarrow n=1-1\)
\(\Rightarrow n=0\)
=> Tích
Bài 2, \(\left(x-1\right)^3=27\)
\(\Leftrightarrow x-1=3\)
\(\Leftrightarrow x=4\)
Bài 3, \(-2,4-\frac{2}{3}< x\le\frac{5}{3}-1\frac{2}{5}\)
\(\Leftrightarrow-3,0\left(6\right)< x\le0,2\left(6\right)\)
Vì x nguyên nên \(x\in\left\{-3;-2;-1;0\right\}\)
Bài 4, Từ \(2x=3y=4z\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)(cùng chia cho 12)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{6+4+3}=\frac{130}{13}=10\)
\(\Rightarrow\hept{\begin{cases}x=6.10=60\\y=4.10=40\\z=3.10=30\end{cases}}\)
bài 1:
\(\frac{2x+5}{x+7}=\frac{3}{4}\)
<=> 4.(2x+5) = 3.(x+7)
<=> 8x+20 = 3x+21
<=> 8x - 3x = 21 - 20
<=> 5x = 1
<=> x = \(\frac{1}{5}\) hay x= 0,2
Đ/S : x=0,2
Bài 2:
có \(\frac{a}{b}=\frac{c}{d}\)
<=> ad=bc
Ta cần cm : \(\frac{a}{a-b}=\frac{c}{c-d}\)
hay a(c-d) = c(a-b)
khai triển có: ac - ad = ac - cb
Có ac=ac (1)
ad=cb (2)
Từ (1) va (2) => ac-ad = ac- cb
=> \(\frac{a}{a-b}=\frac{c}{c-d}\)
=> ĐPCM
Bài 1:
\(\left(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{44.49}\right).\frac{1-3-5-...-49}{89}\)
\(=\frac{1}{5}\left(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{44.49}\right).-\left(\frac{3+5+7+...+49-1}{89}\right)\)
\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{44}-\frac{1}{49}\right).-\left(\frac{\left(49+3\right).24:2-1}{89}\right)\)(Do tổng có 24 số)
\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{49}\right).-\left(\frac{52.12-1}{89}\right)\)
\(=\frac{1}{5}.\frac{45}{196}.\left(-7\right)=-\frac{9}{28}\)
Bài 2:
a) Ta có:
\(|2x+3|=x+2\)
<=> x + 2 >=0 và: \(\orbr{\begin{cases}2x+3=x+2\\2x+3=-x-2\end{cases}}\)
<=> x >= -2 và \(\orbr{\begin{cases}2x-x=2-3\\2x+x=-2-3\end{cases}}\)
<=> x >= -2 và \(\orbr{\begin{cases}x=-1\left(n\right)\\x=-\frac{5}{3}\left(n\right)\end{cases}}\)( n là viết tắt của "nhận" nha bạn)
Vậy x ={-1 ; -5/3}
Xin lỗi vì tớ ko thể lồng dấu \(\hept{\begin{cases}\\\end{cases}}\) và dấu \(\orbr{\begin{cases}\\\end{cases}}\) được nếu lồng sẽ bị lỗi nên tớ dùng chữ "và" nha bạn
b)
A = \(|x-2006|+|2007-x|\)
Vì \(\hept{\begin{cases}|x-2006|\ge0\\|2007-x|\ge0\end{cases}}\)
Nến giá trị A sẽ nhỏ nhất khi \(\orbr{\begin{cases}x=2006\\x=2007\end{cases}}\)
=> Min A = 1 khi x ={2006 ; 2007}
nếu là -343 thì còn được.
2x-1 là số lẻ, lũy thừa số hữu tỉ âm với mũ lẻ kết quả là số hữu tỉ âm. làm sao ra được số 343 mà giải.!
Thân chào!