K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2016

a, x(2x-3) - 2(3-2x) =0

=> x(2x-3)+2(2x-3) = 0

=> ( x+2)(2x-3) = 0

=> \(\orbr{\begin{cases}x+2=0\\2x-3=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=-2\\x=\frac{3}{2}\end{cases}}\)

30 tháng 12 2016

b, x^2(x+1) + 2x(x+1)=0

=> (x^2+2x)(x+1) =0

=> \(\orbr{\begin{cases}x^2+2x=0\\x+1=0\end{cases}}\)

=> \(\orbr{\begin{cases}x\left(x+2\right)=0\\x=-1\end{cases}}\)

=> x = 0 hoặc x= -2 hoặc x=-1

23 tháng 9 2017

. Ai đó giúp tôi đi mà ._.

28 tháng 9 2017

bài khó quá bạn ạ

2 tháng 7 2018

a)  \(\left(x+6\right)^2-x\left(x+9\right)=0\)

\(\Leftrightarrow\)\(x^2+12x+36-x^2-9x=0\)

\(\Leftrightarrow\)\(3x+36=0\)

\(\Leftrightarrow\)\(x=-12\)

Vậy...

b) \(6x\left(2x+5\right)-\left(3x+4\right)\left(4x-3\right)=9\)

\(\Leftrightarrow\)\(12x^2+30x-12x^2-7x+12=9\)

\(\Leftrightarrow\)\(23x+12=9\)

\(\Leftrightarrow\)\(x=-\frac{3}{23}\)

Vậy

c) \(2x\left(8x+3\right)-\left(4x+1\right)=13\)

\(\Leftrightarrow\)\(16x^2+6x-4x-1=13\)

\(\Leftrightarrow\)\(16x^2+2x-14=0\)

\(\Leftrightarrow\)\(8x^2+x-7=0\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(8x-7\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-1\\x=\frac{7}{8}\end{cases}}\)

Vậy

d) \(\left(x-4\right)^2-x\left(x+4\right)=0\)

\(\Leftrightarrow\)\(x^2-8x+16-x^2-4x=0\)

\(\Leftrightarrow\)\(-12x+16=0\)

\(\Leftrightarrow\)\(x=\frac{4}{3}\)

Vậy

e) \(\left(x-2\right)^2-\left(2x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\)\(x^2-4x+4-2x^2+x+6=0\)

\(\Leftrightarrow\)\(-x^2-3x+10=0\)

\(\Leftrightarrow\)\(\left(2-x\right)\left(x+5\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)

Vậy

30 tháng 11 2016

\(2x^2-7x+5=0\)

\(2x^2-2x-5x+5=0\)

\(2x\left(x-1\right)-5\left(x-1\right)=0\)

\(\left(x-1\right)\left(2x-5\right)=0\)

\(\left[\begin{array}{nghiempt}x-1=0\\2x-5=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=1\\2x=5\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=1\\x=\frac{5}{2}\end{array}\right.\)

\(x\left(2x-5\right)-4x+10=0\)

\(x\left(2x-5\right)-2\left(2x-5\right)=0\)

\(\left(2x-5\right)\left(x-2\right)=0\)

\(\left[\begin{array}{nghiempt}x-2=0\\2x-5=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=2\\2x=5\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=2\\x=\frac{5}{2}\end{array}\right.\)

\(\left(x-5\right)\left(x+5\right)-x\left(x-2\right)=15\)

\(x^2-25-x^2+2x=15\)

\(2x=15+25\)

\(2x=40\)

\(x=\frac{40}{2}\)

\(x=20\)

\(x^2\left(2x-3\right)-12+8x=0\)

\(x^2\left(2x-3\right)+4\left(2x-3\right)=0\)

\(\left(2x-3\right)\left(x^2+4\right)=0\)

\(2x-3=0\) (vì \(x^2\ge0\Rightarrow x^2+4\ge4>0\))

\(2x=3\)

\(x=\frac{3}{2}\)

\(x\left(x-1\right)+5x-5=0\)

\(x\left(x-1\right)+5\left(x-1\right)=0\)

\(\left(x-1\right)\left(x+5\right)=0\)

\(\left[\begin{array}{nghiempt}x-1=0\\x+5=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=1\\x=-5\end{array}\right.\)

\(\left(2x-3\right)^2-4x\left(x-1\right)=5\)

\(4x^2-12x+9-4x^2+4x=5\)

\(-8x=5-9\)

\(-8x=-4\)

\(x=\frac{4}{8}\)

\(x=\frac{1}{2}\)

\(x\left(5-2x\right)+2x\left(x-1\right)=13\)

\(5x-2x^2+2x^2-2x=13\)

\(3x=13\)

\(x=\frac{13}{3}\)

\(2\left(x+5\right)\left(2x-5\right)+\left(x-1\right)\left(5-2x\right)=0\)

\(\left(2x+10\right)\left(2x-5\right)-\left(x-1\right)\left(2x-5\right)=0\)

\(\left(2x-5\right)\left(2x+10-x+1\right)=0\)

\(\left(2x-5\right)\left(x+11\right)=0\)

\(\left[\begin{array}{nghiempt}2x-5=0\\x+11=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}2x=5\\x=-11\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-11\end{array}\right.\)

30 tháng 11 2016

Cảm ơn

 

29 tháng 8 2021

\(a,x^4-2x^3+5x^2-10x=0\\ \Leftrightarrow x^3\left(x-2\right)+5x\left(x-2\right)=0\\ \Leftrightarrow x\left(x^2+5\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x^2+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x\in\varnothing\left(x^2+5>0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

\(b,\left(3x+5\right)^2=\left(2x-2\right)^2\\ \Leftrightarrow\left(3x+5\right)^2-\left(2x-2\right)^2=0\\ \Leftrightarrow\left(3x+5+2x-2\right)\left(3x+5-2x+2\right)=0\\ \Leftrightarrow\left(5x+3\right)\left(x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=-7\end{matrix}\right.\)

\(c,x^3-2x^2+x=0\\ \Leftrightarrow x\left(x-1\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

\(d,x^2\left(x-1\right)-4x^2+8x-4=0\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

29 tháng 8 2021

a) \(x^4-2x^3+5x^2-10x=0\\ \Rightarrow\left(x^4-2x^3\right)+\left(5x^2-10x\right)=0\\ \Rightarrow x^3\left(x-2\right)+5x\left(x-2\right)=0\\ \Rightarrow\left(x^3+5x\right)\left(x-2\right)=0\\ \Rightarrow x\left(x^2+5\right)\left(x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^2+5=0\\x-2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{5}\\x=2\end{matrix}\right.\)

Vậy \(x=\left\{-\sqrt{5};0;\sqrt{5};2\right\}\)

b) \(\left(3x+5\right)^2=\left(2x-2\right)^2\\ \Rightarrow\left[{}\begin{matrix}3x+5=2x-2\\3x+5=-2x+2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-7\\x=-\dfrac{3}{5}\end{matrix}\right.\)

c) \(x^3-2x^2+x=0\\ \Rightarrow x\left(x^2-2x+1\right)=0\\ \Rightarrow x\left(x-1\right)^2=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\\left(x-1\right)^2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

vậy ...

 

d) \(x^2\left(x-1\right)-4x^2+8x-4=0\\ x^2\left(x-1\right)-\left(4x^2-8x+4\right)=0\\ x^2\left(x-1\right)-\left(2x-2\right)^2=0\\ \Rightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Rightarrow\left(x-1\right)\left[x^2-4\left(x-1\right)\right]=0\\ \Rightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Rightarrow\left(x-1\right)\left(x-2\right)^2=0\)

    \(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

6 tháng 7 2018
https://i.imgur.com/XlB7mwa.jpg
6 tháng 7 2018
https://i.imgur.com/E2sWxLH.jpg
5 tháng 4 2022

`Answer:`

Bài 1:

a) \(7+2x=22-3x\)

\(\Leftrightarrow2x+3x=22-7\)

\(\Leftrightarrow5x=15\)

\(\Leftrightarrow x=3\)

b) \(8x-3=5x+12\)

\(\Leftrightarrow8x-5x=12+3\)

\(\Leftrightarrow3x=15\)

\(\Leftrightarrow x=5\)

c) \(x-12+4x=25+2x-1\)

\(\Leftrightarrow x-12+4x-25-2x+1=0\)

\(\Leftrightarrow\left(x+4x-2x\right)+\left(1-12-25\right)=0\)

\(\Leftrightarrow3x-36=0\)

\(\Leftrightarrow x=12\)

d) \(x+2x+3x-19=3x+5\)

\(\Leftrightarrow6x-19=3x+5\)

\(\Leftrightarrow6x-3x=5+19\)

\(\Leftrightarrow3x=24\)

\(\Leftrightarrow x=8\)

Bài 2:

a) \(\left(2,3x-6,9\right)\left(0,1x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2,3x-6,9=0\\0,1x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-20\end{cases}}}\)

b) \(\left(2x+7\right)\left(x-5\right)\left(5x+1\right)=0\)

\(\Leftrightarrow2x+7=0\text{ hoặc }x-5=0\text{ hoặc }5x+1=0\)

\(\Leftrightarrow x=-\frac{7}{2}\text{ hoặc }x=5\text{ hoặc }x=-\frac{1}{5}\)

c) \(\left(4x+2\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x+2=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x^2=-1\text{(Loại)}\end{cases}}}\)

d) \(\left(x^2-4\right)+\left(x-2\right)\left(3-2x\right)=0\)

\(\Leftrightarrow x^2-4+\left(3x-2x^2-6+4x\right)=0\)

\(\Leftrightarrow x^2-4=\left(-2x^2+7x-6\right)=0\)

\(\Leftrightarrow x^2-4-2x^2+7x-6=0\)

\(\Leftrightarrow-x^2+7x-10=0\)

\(\Leftrightarrow x^2-5x-2x+10=0\)

\(\Leftrightarrow x.\left(x-5\right)-2.\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right).\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}}\)

9 tháng 7 2018

A. \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^2+3x+2x+6\right)-\left(x^2+5x-2x-10\right)=0\)
\(\Leftrightarrow x^2+3x+2x+6-x^2-5x+2x+10=0\)
\(\Leftrightarrow x^2+3x+2x-x^2-5x+2x=-6-10\)
\(\Leftrightarrow2x=-16\)
\(\Leftrightarrow x=-8\)
.Vậy \(S=\left\{-8\right\}\)

B. \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x+5\right)\left(x-4\right)\)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x+5x-20\)
\(\Leftrightarrow2x^2-8x+3x+x^2-2x-5x-3x^2+12x-5x=12-10-20\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\) . Vậy \(S=\left\{\dfrac{18}{5}\right\}\)

C. \(\left(8-4x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow8x+16-4x^2-8x+4\left(x^2+x-2x-2\right)=0\)
\(\Leftrightarrow8x+16-4x^2-8x+4x^2+4x-8x-8=0\)
\(\Leftrightarrow8x-4x^2-8x+4x^2+4x-8x=-16+8\)

\(\Leftrightarrow-4x=-8\)
\(\Leftrightarrow x=2\) . Vậy \(S=\left\{2\right\}\)

D. \(\left(2x-3\right)\left(8x+2\right)=\left(4x+1\right)\left(4x-1\right)-3\)
\(\Leftrightarrow16x^2+4x-24x-6=16x^2+1^2-3\)
\(\Leftrightarrow16x^2+4x-24x-16x^2=6+1-3\)
\(\Leftrightarrow-20x=4\)
\(\Leftrightarrow x=-\dfrac{1}{5}\) . Vậy \(S=\left\{-\dfrac{1}{5}\right\}\)

9 tháng 7 2018

a)(x+2)(x+3)-(x-2)(x+5)=0

\(\Leftrightarrow x^2+3x+2x+6-x^2-5x+2x+10=0\)

<=>2x=-16

<=>x=-8

b)(2x+3)(x-4)+(x-5)(x-2)=(3x-5)(x-4)

\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x-5x+20\)

\(\Leftrightarrow3x^2-12x-2=3x^2-17x+20\)

\(\Leftrightarrow5x=22\Leftrightarrow x=\dfrac{22}{5}\)

c)(8-4x)(x+2)+4(x-2)(x+1)=0

\(\Leftrightarrow8x+16-4x^2-8x+4x^2+4x-8x-8=0\)

\(\Leftrightarrow-4x=-8\Leftrightarrow x=2\)

d)(2x-3)(8x+2)=(4x+1)(4x-1)-3

\(\Leftrightarrow16x^2+4x-24x-6=16x^2-4x+4x-1-3\)

\(\Leftrightarrow-20x=-2\Leftrightarrow x=\dfrac{-1}{10}\)

16 tháng 9 2019

a) x3 - 16x = 0

x(x2 - 16) = 0

=> x = 0 hoặc x2 - 16 = 0

x = 4

Vậy x = 0 hoặc x = 4

b) x4 -2x3 + 10x2 - 20x = 0

x3 (x - 2) + 10x(x - 2) = 0

(x - 2)(x3 + 10x) = 0

=> x - 2 = 0 hoặc x3 + 10x = 0

x = 2 x(x2 + 10) = 0

+ TH1: x = 0

+ TH2: x2 + 10 = 0

x2 = -10 (vô lí)

Vậy x = 2 hoặc x = 0

c) (2x - 3)2 = (x + 5)2

(2x)2 + 2 . 2x . 3 + 32 = x2 + 2.x.5 + 52

4x2 + 12x + 9 = x2 + 10x + 25

4x2 + 12x - x2 - 10x = 25 - 9

3x2 + 2x = 16

x(3x + 2) = 16

Đến đây bạn làm nốt câu c nhé!