\(\in\) Z biết

a, \(\left|x+45-40\right|+\le...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

a) Mình k chép lại đề nữa nha!

Vì |x+45-40| luôn lớn hơn hoặc bằng 0 với mọi x.

|y+10-11| luôn lớn hơn hoặc bằng 0 với mọi y

Mà |x+45-40|+|y+10-11| nhỏ hơn hoặc bằng 0

Nên |x+45-40| =0 => x=-5

Và |y+10-11|=0 => y=1

Vậy x= -5; y =1

Chúc bạn học tốt nha!hihi

26 tháng 7 2017

b) 10000-|x+5|

Vì |x+ 5| luôn lớn hơn hoặc bằng 0 với mọi x

=> 10000-|x+5| luôn nhỏ hơn hoặc bằng 10000 với mọi x

Dấu = xảy ra <=>: x+5 = 0

<=> x=-5

Vậy GTLN của biểu thức trên là 10000 tại x=-5.

23 tháng 11 2016

Bài 1 ) \(P=\left|x-1\right|+5\)

Ta có : \(\left|x-1\right|\ge0\)

\(\Leftrightarrow\left|x-1\right|+5\ge5\)

Dấu " = " xảy ra khi và chỉ khi \(x-1=0\)

\(\Leftrightarrow x=1\)

Vậy \(Min_P=5\Leftrightarrow x=1\)

Bài 2 ) \(Q=7-\left|5-x\right|\)

Ta có : \(\left|5-x\right|\ge0\)

\(\Rightarrow7-\left|5-x\right|\le7\)

Dấu " = " xảy ra khi và chỉ khi \(5-x=0\)

\(\Leftrightarrow x=5\)

Vậy \(Max_Q=7\Leftrightarrow x=5\)

 

23 tháng 11 2016

27 tháng 3 2015

tui pit pai 2 y a.neu muon pit thi like like like

27 tháng 3 2015

trả lời meo like ùi cũng pít câu like đó à nka

21 tháng 3 2020

a)  \(A=\left|x-3\right|+1\)

Vì \(\left|x-3\right|\ge0\)

\(\Leftrightarrow\left|x-3\right|+1\ge1\)

Dấu " = " xảy ra khi và chỉ khi : 

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Min_A=1\Leftrightarrow x=3\)

b) \(B=3-\left|x+1\right|\)

Vì \(-\left|x+1\right|\le0\)

\(\Leftrightarrow3-\left|x+1\right|\le3\)

Dấu " = " xảy ra khi và chỉ khi :

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy \(Max_B=3\Leftrightarrow x=-1\)

c) \(C=\left|x-5\right|+\left|y+3\right|+7\)

Vì : \(\left|x-5\right|\ge0\)

       \(\left|y+3\right|\ge0\)

\(\Leftrightarrow\left|x-5\right|+\left|y+3\right|+7\ge7\)

Dấu " = " xảy ra khi và chỉ khi :

\(\Leftrightarrow\hept{\begin{cases}x-5=0\\y+3=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=5\\y=-3\end{cases}}\)

Vậy \(Min_C=7\Leftrightarrow\left(x;y\right)=\left(5;-3\right)\)

15 tháng 6 2017

2/ Ta có : 4x - 3 \(⋮\) x - 2

<=> 4x - 8 + 5  \(⋮\) x - 2

<=> 4(x - 2) + 5  \(⋮\) x - 2

<=> 5 \(⋮\)x - 2 

=> x - 2 thuộc Ư(5) = {-5;-1;1;5}

Ta có bảng : 

x - 2-5-115
x-3137
20 tháng 2 2020

a, để A nguyên

=> 7 - x chia hết cho x - 5

=> 5 - x + 2 chia hết cho x - 5

=> -(x - 5) + 2 chia hết cho x - 5

=> 2 chia hết cho x - 5

=> x - 5 thuộc Ư(2)

=> x - 5 thuộc {-1;1-2;2}

=> x thuộc {4; 6; 3; 7}

12 tháng 2 2019

a đây là điều hiển nhiên

b (x-8)2>=0 nên (x-8)-2018>=-2018

dấu "=" xảy ra khi x=8

c/(x+5)>=0 nên -(x+5)2 <=0

nên -(x+5)2 +9<=9

dấu "=" xảy ra khi x=-5

19 tháng 8 2020

a. Vì A thuộc Z 

\(\Rightarrow x-2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-3;1;3;7\right\}\)( tm x thuộc Z )

b. Ta có : \(B=\frac{x+2}{x-3}=\frac{x-3+5}{x-3}=1+\frac{5}{x-3}\)

Vì B thuộc Z nên 5 / x - 3 thuộc Z

\(\Rightarrow x-3\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-2;2;4;8\right\}\)( tm x thuộc Z )

c. Ta có : \(C=\frac{x^2-x}{x+1}=\frac{x^2+x-2x+2-2}{x+1}=\frac{x\left(x+1\right)-2x+2-2}{x+1}\)

\(=x-2-\frac{2}{x+1}\)

Vi C thuộc Z nên 2 / x + 1 thuộc Z

\(\Rightarrow x+1\in\left\{-2;-1;1;2\right\}\)

\(\Rightarrow x\in\left\{-3;-2;0;1\right\}\) ( tm x thuộc Z )

30 tháng 6 2018

1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

Vậy GTNN của A = -8 khi x=0, y=2.

b) Ta có: \(B=|x-3|+|x-7|\)

\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)

Vậy GTNN của B = 4 khi \(3\le x\le7\)

2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)

\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)

b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)

Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:

\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)

Bài 3: đề không rõ.

30 tháng 6 2018

Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)

Có \(x^4\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow A\ge0+0-8=-8\)

Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)

\(b,B=\left|x-3\right|+\left|x-7\right|\)

\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)

\(\Rightarrow B\ge\left|x-3+7-x\right|\)

\(\Rightarrow B\ge\left|-10\right|=10\)

Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)