Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\Rightarrow\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{z^2}{25}\)
và x2 - 2y2 - z2 = 44
A/dụng t/c của dãy tỉ số = nhau có:
\(\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{z^2}{25}=\dfrac{x^2-2y^2-z^2}{4-18-25}=\dfrac{44}{-39}=-\dfrac{44}{39}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=-\dfrac{176}{39}\left(voli\right)\\y^2=-\dfrac{132}{13}\left(voli\right)\\z^2=-\dfrac{1100}{39}\left(voli\right)\end{matrix}\right.\)
Vậy k tìm đc x,y,z thỏa mãn đề
p/s: chắc là sai đề đó bạn, sửa thành x2 - 2y2 + z2 = 44 thì mới ra kq nhé
Bài 1:
Giải:
Ta có: \(\left\{{}\begin{matrix}3x=4y\\5y=6z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{4}=\dfrac{y}{3}\\\dfrac{y}{6}=\dfrac{z}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{y}{6}\\\dfrac{y}{6}=\dfrac{z}{5}\end{matrix}\right.\Rightarrow\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}\)
Đặt \(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=8k\\y=6k\\z=5k\end{matrix}\right.\)
Mà \(xyz=30\)
\(\Rightarrow240k^3=30\)
\(\Rightarrow k^3=\dfrac{1}{8}\)
\(\Rightarrow k=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=3\\z=2,5\end{matrix}\right.\)
Vậy...
Bài 2: sai đề
Bài 3:
Đặt \(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=k\Rightarrow\left\{{}\begin{matrix}x=2k+1\\y=4k-3\\z=6k+5\end{matrix}\right.\)
Ta có: \(x+2y+3z=38\)
\(\Rightarrow2k+1+8k-6+18k+15=38\)
\(\Rightarrow28k=28\)
\(\Rightarrow k=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=1\\z=11\end{matrix}\right.\)
Vậy...
1) Ta có :
\(3x=4y\Rightarrow\dfrac{3x}{12}=\dfrac{4y}{12}\Rightarrow\dfrac{x}{4}=\dfrac{y}{3}\) <=> \(\dfrac{x}{8}=\dfrac{y}{6}\)
\(5y=6z\Rightarrow\dfrac{5y}{30}=\dfrac{6z}{30}\Rightarrow\dfrac{y}{6}=\dfrac{z}{5}\)
=> \(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}\)
Đặt \(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=8k\\y=6k\\z=5k\end{matrix}\right.\)
Thay vào đẳng thức xyz = 30
=> 8k.6k.5k = 30
<=> 240k3 = 30
<=> k3 = 8
<=> k = 2
\(\Rightarrow\left\{{}\begin{matrix}x=8.2=16\\y=6.2=12\\z=5.2=10\end{matrix}\right.\)
b) Câu này cũng tương tự câu 1 nha ! Đặt k luôn , còn không bình phương lên rồi dùng tính chất dãy tỉ số bằng nhau .
c) Đặt \(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=k\)
=> \(\left\{{}\begin{matrix}x=2k+1\\y=4k-3\\z=6k+5\end{matrix}\right.\)
Thay vào đẳng thức , ta có :
x + 2y + 3z = 2k + 1 + 2(4k - 3) + 3(6k + 5) = 38
=> 28k = 38
=> k = \(\dfrac{19}{14}\)
Vậy .....
b)ta có: \(\frac{x}{5}=\frac{y}{4}=\frac{z}{-6}\Rightarrow\frac{x^3}{125}=\frac{y^3}{64}=\frac{z^3}{-216}=\frac{x^3}{125}=\frac{y^3}{64}=\frac{3z^3}{-648}\)
ADTCDTSBN
có: \(\frac{x^3}{125}=\frac{3z^3}{-648}=\frac{x^3+3z^3}{125+\left(-648\right)}=\frac{-14121}{-523}=27\)
=> x3/125 = 27 => x3 = 3 375 => x = 15
y3/64 = 27 => y3 = 1 728 => y = 12
z3/-216 =27 => z3 = -5 832 => z3 = -18
KL:...
câu c thì mk ko bk! sr bn nha!
a) ta có: \(\frac{x}{y}=\frac{7}{20}\Rightarrow x20=y7\Rightarrow\frac{x}{7}=\frac{y}{20}\Rightarrow\frac{x}{49}=\frac{y}{140}\)
\(\frac{y}{z}=\frac{7}{3}\Rightarrow y3=z7\Rightarrow\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{y}{140}=\frac{z}{60}\)
\(\Rightarrow\frac{x}{49}=\frac{y}{140}=\frac{z}{60}\)
ADTCDTSBN
có: \(\frac{x}{49}=\frac{y}{140}=\frac{z}{60}=\frac{x-y+z}{49-140+60}=\frac{-155}{-31}=5\)
=> x/49 = 5 => x = 245
y/140 = 5 => y = 700
z/60 = 5 => z = 300
KL:...
bn ơi,vì tất cả bài tập này khá nhiều và cx khá khó nên sẽ ko ai trả lời đâu,bn nên đăng từng bài một thôi nhé,nếu bn đăng như mk nói thì mà ko có ai trả lời thì hãy viết bài toán đó trên google để tra nhé,chúc bn làm bài tốt
a: 3x=2y nên x/2=y/3
7y=5z nên y/5=z/7
=>x/10=y/15=z/21
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)
=>x=20; y=30; z=42
b: 2x=3y=5z
nên x/15=y/10=z/6
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
=>x=75; y=50; z=30
d: Đặt x/3=y/4=z/5=k
=>x=3k; y=4k; z=5k
2x^2+2y^2-3z^2=-100
=>18k^2+32k^2-3*25k^2=-100
=>25k^2=100
=>k^2=4
TH1: k=2
=>x=6; y=8; z=10
TH2: k=-2
=>x=-6; y=-8; z=-10
a) \(\frac{2x}{3}=\frac{3y}{4}\Leftrightarrow8x=9y\Rightarrow x=\frac{9y}{8}\left(1\right)\)
\(\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow15y=16z\Rightarrow z=\frac{15y}{16}\left(2\right)\)
THay (1) và (2) vào biểu thức \(x+y+z=41\);ta được : \(\frac{9y}{8}+y+\frac{15y}{16}=41\)
\(\Rightarrow18y+16y+15y=656\Rightarrow y=\frac{656}{49}\)
Do đó : \(x=\frac{\frac{9.656}{49}}{8}=\frac{738}{49}\)
\(z=\frac{\frac{15.656}{49}}{16}=\frac{615}{49}\)
KL : \(x=\frac{738}{49};y=\frac{656}{49};z=\frac{615}{49}\)
b) Ta có : \(4x=3y\Rightarrow x=\frac{3y}{4}\)(1)
\(5y=6z\Rightarrow z=\frac{5y}{6}\)(2)
Thay (1) và (2) vào biểu thức \(x^2+y^2+z^2=500\);ta được :
\(\left(\frac{3y}{4}\right)^2+y^2+\left(\frac{5y}{6}\right)^2=500\)
\(\Rightarrow\frac{9y^2}{16}+y^2+\frac{25y^2}{36}=500\Rightarrow324y^2+576y^2+400y^2=288000\)
\(\Rightarrow1300y^2=288000\Rightarrow y^2=\frac{2880}{13}\Rightarrow\orbr{\begin{cases}y=\frac{24\sqrt{65}}{13}\\y=-\frac{24\sqrt{65}}{13}\end{cases}}\)
Với \(y=\frac{24\sqrt{65}}{13}\Rightarrow x=\frac{3\cdot\frac{24\sqrt{65}}{13}}{4}=\frac{18\sqrt{65}}{13};z=\frac{5\cdot\frac{24\sqrt{65}}{13}}{6}\)
\(y=-\frac{24\sqrt{65}}{13}\Rightarrow x=-\frac{18\sqrt{65}}{13};z=\frac{5\cdot-\frac{24\sqrt{65}}{13}}{6}\)
Ta có :\(y^2=xz\Rightarrow\dfrac{x}{y}=\dfrac{y}{z}\)(1)
\(x^2=yt\Rightarrow\dfrac{x}{y}=\dfrac{t}{x}\) (2)
Từ (1) và (2) , ta suy ra :\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}\)
Đặt \(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}=k\)\(\)(3)
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}=k\Rightarrow k^3=\dfrac{x^3}{y^3}=\dfrac{y^3}{z^3}=\dfrac{t^3}{x^3}=\dfrac{x^3+y^3+t^3}{y^3+z^3+x^3}\)
\(\Rightarrow\dfrac{t^3}{x^3}=\dfrac{x^3+y^3+t^3}{y^3+z^3+x^3}\)
\(\Rightarrow\dfrac{x^3}{t^3}=\dfrac{x^3+y^3+z^3}{x^3+y^3+t^3}\)
\(\Rightarrow\dfrac{x^3+y^3+z^3}{x^3+y^3+t^3}=\left(\dfrac{x}{t}\right)^3\)
Đề có sai không vậy bạn
\(\left\{{}\begin{matrix}y^2=xz\\x^2=yt\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{y}=\dfrac{y}{z}\\\dfrac{x}{y}=\dfrac{t}{x}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}\)
Đặt:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=yk\\y=zk\\t=xk\end{matrix}\right.\)
Thay vào tính :v
Bài2:
Vì x:y:z tỉ lệ với 4:5:6 =>\(\dfrac{x}{4}\)=\(\dfrac{y}{5}\)=\(\dfrac{z}{6}\) mà \(x^2\)-\(2y^2\)+\(z^2\)= 18
Ta có:
\(\dfrac{x}{4}\)=\(\dfrac{x^2}{16}\)
\(\dfrac{y}{5}\)=\(\dfrac{2y}{5}\)=\(\dfrac{2y^2}{10}\)
\(\dfrac{z}{6}\)=\(\dfrac{z^2}{36}\)
Áp dụng tính chất dãy tỉ số= nhau,ta có:
\(\dfrac{x^2}{16}\)=\(\dfrac{2y^2}{10}\)=\(\dfrac{z^2}{36}\)=\(\dfrac{x^2-2y^2+z^2}{16-10+36}\)=\(\dfrac{18}{42}\)=\(\dfrac{3}{7}\)
\(\dfrac{x^2}{16}\)=\(\dfrac{3}{7}\)
=> \(x^2\)=\(\dfrac{48}{7}\)
=> x=\(\sqrt{\dfrac{48}{7}}\)
\(\dfrac{2y^2}{10}\)=\(\dfrac{3}{7}\)
=> \(2y^2\)=\(\dfrac{30}{7}\)
2y=\(\sqrt{\dfrac{30}{7}}\)
y=\(\sqrt{\dfrac{30}{7}}\):2
y= 1,035098339.....
\(\dfrac{z^2}{36}\)=\(\dfrac{3}{7}\)
=> \(z^2\)=\(\dfrac{108}{7}\)
z= \(\sqrt{\dfrac{108}{7}}\)