Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Q có giá trị dương nhỏ nhất => Q=1
=> 1/(3,5-|x+5|)=1 <=> 3,5-|x+5|=1 <=> |x+5|=2,5 => x+5=2,5 hoặc x+5=-2,5
=> x=-2,5 hoặc -7,5.
Để số đó là số dương nhỏ nhất thì
l x + 5 l >= 0 ( vm x )
3,5 - l x + 5 l >= 3,5 ( vm x)
1 / 3,5 - l x + 5 l =< 1/3,5
Dấu "=" xảy ra khi và chỉ khi x + 5 = 0 => x = - 5
Vậy x = -5 thì Q đạt giá trị dương nhỏ nhất
-|x+5|<=0 với mọi x
=>3,5-|x+5|<=3,5
=>E>=1/3,5=1:7/2=2/7
dấu "=" xảy ra khi và chỉ khi x+5=0
=>x=-5
vậy GTNN của E=2/7 tại x=-5
a) \(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow\left(x-2\right)^2-1\ge-1\)
Vậy giá trị nhỏ nhất \(=-1\)
b) \(\left(x-2\right)^2+5\ge5\)
\(\Leftrightarrow\frac{1}{\left(x-2\right)^2+5}\le\frac{1}{5}\)
\(\Leftrightarrow\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{5}\)
Vậy giá trị lớn nhất \(=\frac{3}{5}\)
Vì \(\left|3,4-x\right|\) luôn dương nên để C nhỏ nhất thì \(\left|3,4-x\right|\) nhỏ nhất
\(\Rightarrow\left|3,4-x\right|=0\)
\(\Rightarrow3,4-x=0\)
\(\Rightarrow x=3,4\)
Khi \(x=3,4\) thì giá trị của C là 1,7 + 0 = 1,7
Để D nhỏ nhất thì \(\left|x+2,8\right|=3,5\)
Ta có: \(\left|x+2,8\right|=3,5\)
\(\Rightarrow\left\{{}\begin{matrix}x+2,8=3,5\\x+2,8=-3,5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0,7\\x=-6,3\end{matrix}\right.\)
Vậy khi x = 0,7 hoặc x = -6,3 thì D = 3,5 - 3,5 = 0
Vì \(-|x+5|\le0;\forall x\)
\(\Rightarrow3,5-|x+5|\le3,5-0;\forall x\)
\(\Rightarrow\frac{1}{3,5-|x+5|}\ge\frac{1}{3,5};\forall x\)
Hay \(E\ge\frac{1}{3,5};\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow|x+5|=0\)
\(\Leftrightarrow x=-5\)
Vậy MIN \(E=\frac{1}{3,5}\Leftrightarrow x=-5\)
Ta có: \(3,5-\left|x+5\right|\le3,5\)
\(\Rightarrow Q=\dfrac{1}{3,5-\left|x+5\right|}\le\dfrac{2}{7}\)
Dấu " = " khi \(-\left|x+5\right|=0\Rightarrow x=-5\)
Vậy \(MIN_Q=\dfrac{2}{7}\) khi x = -5
tìm gt duong nhỏ nhất mà bn, đâu phải GTNN đâu