\(\dfrac{1}{3,5-\left|x+5\right|}\) có giá trị dương nhỏ nhất

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

Ta có: \(3,5-\left|x+5\right|\le3,5\)

\(\Rightarrow Q=\dfrac{1}{3,5-\left|x+5\right|}\le\dfrac{2}{7}\)

Dấu " = " khi \(-\left|x+5\right|=0\Rightarrow x=-5\)

Vậy \(MIN_Q=\dfrac{2}{7}\) khi x = -5

17 tháng 8 2017

tìm gt duong nhỏ nhất mà bn, đâu phải GTNN đâu

2 tháng 8 2017

Q có giá trị dương nhỏ nhất  => Q=1

=> 1/(3,5-|x+5|)=1 <=> 3,5-|x+5|=1 <=> |x+5|=2,5 => x+5=2,5 hoặc x+5=-2,5

=> x=-2,5 hoặc -7,5.

2 tháng 8 2017

Để số đó là số dương nhỏ nhất thì

l x + 5 l >= 0 ( vm x )

3,5 - l x + 5 l >= 3,5 ( vm x)

1 / 3,5 - l x + 5 l =< 1/3,5

Dấu "=" xảy ra khi và chỉ khi x + 5 = 0 => x = - 5

Vậy x = -5 thì Q đạt giá trị dương nhỏ nhất

-|x+5|<=0 với mọi x

=>3,5-|x+5|<=3,5

=>E>=1/3,5=1:7/2=2/7

dấu "=" xảy ra khi và chỉ khi x+5=0

=>x=-5

vậy GTNN của E=2/7 tại x=-5

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak

23 tháng 4 2019

a)  \(\left(x-2\right)^2\ge0\)

\(\Leftrightarrow\left(x-2\right)^2-1\ge-1\)

Vậy giá trị nhỏ nhất \(=-1\)

b) \(\left(x-2\right)^2+5\ge5\)

\(\Leftrightarrow\frac{1}{\left(x-2\right)^2+5}\le\frac{1}{5}\)

\(\Leftrightarrow\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{5}\)

Vậy giá trị lớn nhất \(=\frac{3}{5}\)

10 tháng 6 2017

\(\left|3,4-x\right|\) luôn dương nên để C nhỏ nhất thì \(\left|3,4-x\right|\) nhỏ nhất

\(\Rightarrow\left|3,4-x\right|=0\)

\(\Rightarrow3,4-x=0\)

\(\Rightarrow x=3,4\)

Khi \(x=3,4\) thì giá trị của C là 1,7 + 0 = 1,7

10 tháng 6 2017

Để D nhỏ nhất thì \(\left|x+2,8\right|=3,5\)

Ta có: \(\left|x+2,8\right|=3,5\)

\(\Rightarrow\left\{{}\begin{matrix}x+2,8=3,5\\x+2,8=-3,5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0,7\\x=-6,3\end{matrix}\right.\)

Vậy khi x = 0,7 hoặc x = -6,3 thì D = 3,5 - 3,5 = 0

16 tháng 10 2017

toán lớp mấy mà cóa)1,7-2√x2x-1 z

18 tháng 10 2017

7 uk

7 tháng 9 2019

Vì \(-|x+5|\le0;\forall x\)

\(\Rightarrow3,5-|x+5|\le3,5-0;\forall x\)

\(\Rightarrow\frac{1}{3,5-|x+5|}\ge\frac{1}{3,5};\forall x\)

Hay \(E\ge\frac{1}{3,5};\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow|x+5|=0\)

                        \(\Leftrightarrow x=-5\)

Vậy MIN \(E=\frac{1}{3,5}\Leftrightarrow x=-5\)