Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)
\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)
\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)
\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)
Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình
Bài 1:
a) \(\sqrt{1-x^2}\)có nghĩa \(\Leftrightarrow\)\(1-x^2\ge0\)
\(\Leftrightarrow\)\(x^2\le1\)
\(\Leftrightarrow\)\(\left|x\right|\le1\)
b) \(\sqrt{\frac{x-2}{x-3}}\)có nghĩa \(\Leftrightarrow\)\(\frac{x-2}{x-3}\ge0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x>3\\x\le2\end{cases}}\)
Bài 1:
1. \(\sqrt{a}\)có nghĩa <=> \(a\ge0\)
2. a) \(\sqrt{2x+6}\)có nghĩa <=> \(2x+6\ge0\)
\(\Leftrightarrow2x\ge-6\)
\(x\ge-3\)
b)\(\sqrt{\frac{-2}{2x-3}}\) có nghĩa \(\Leftrightarrow\frac{-2}{2x-3}\ge0\)
có -2 < 0
\(\Leftrightarrow\hept{\begin{cases}2x-3\ne0\\2x-3\le0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x\ne3\\2x\le3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne\frac{3}{2}\\x\le\frac{3}{2}\end{cases}}\)
\(\Rightarrow x< \frac{3}{2}\)
Bài 4 :
\(P=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-1\right).\sqrt{x}}-\frac{\sqrt{x}-1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right):\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right)\)
\(\Leftrightarrow\left(\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right):\left(\frac{\left(x-1\right)-\left(x-4\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\right)\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right):\left(\frac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}{3}\right)\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}\) \(\left(ĐKXĐ:x>0;x\ne4;x\ne1\right)\)
b) \(P=\frac{1}{4}\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}=\frac{1}{4}\)
\(\Leftrightarrow4\sqrt{x}-8=3\sqrt{x}\)
\(\Leftrightarrow4\sqrt{x}-3\sqrt{x}=8\)
\(\Leftrightarrow\sqrt{x}=8\)
\(\Leftrightarrow x=64\left(TMĐXĐ\right)\)
Vậy khi \(P=\frac{1}{4}\) thì x=64
Bài 2 :
a) Sửa đề :
\(A=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)
\(A=\sqrt{3}-1-\sqrt{3}\)
\(A=-1\)
b) \(B=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
\(B=\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(B=\sqrt{2}+1-\sqrt{2}+1\)
\(B=2\)
c) \(C=\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
\(C=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(C=2-\sqrt{3}+2+\sqrt{3}\)
\(C=4\)
d) \(D=\sqrt{23+8\sqrt{7}}-\sqrt{7}\)
\(D=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)
\(D=4+\sqrt{7}-\sqrt{7}\)
\(D=4\)
Bài 1 :
a) Để \(\sqrt{\left(x-1\right)\left(x-3\right)}\) có nghĩa
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\ge0\)
TH1 :\(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow x\ge3}\)
TH2 : \(\hept{\begin{cases}x-1\le0\\x-3\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le1\\x\le3\end{cases}\Leftrightarrow}x\le1}\)
Vậy để biểu thức có nghĩa thì \(\orbr{\begin{cases}x\ge3\\x\le1\end{cases}}\)
b) Để \(\sqrt{\frac{1-x}{x+2}}\)có nghĩa
\(\Leftrightarrow\frac{1-x}{x+2}\ge0\)
TH1 : \(\hept{\begin{cases}1-x\ge0\\x+2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge-2\end{cases}\Leftrightarrow}-2\le x\le1}\)
TH2 : \(\hept{\begin{cases}1-x\le0\\x+2\le0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge1\\x\le-2\end{cases}\Leftrightarrow x\in\varnothing}\)
Vậy để biểu thức có nghĩa thì \(-2\le x\le1\)
Bài 1
a) Do 6-12 <0 => căn bậc 2 này k có nghĩa
b) căn bậc 2 có nghĩa khi ;
\(\frac{10}{2x+4}\ge0\Rightarrow2x+4\le10\)
\(\Rightarrow\)2x\(\le6\)\(\Rightarrow x\le3\)
1)
a) \(\sqrt{6x-12}\)
Căn thức trên có nghĩa khia 6x-12 ≥ 0
<=> x ≥ 2
Bài 2
a) \(\sqrt{\left(1+4\sqrt{3}\right)^2}-\sqrt{3}\)
= 1 + \(4\sqrt{3}\) - \(\sqrt{3}\)
= 1+ 3\(\sqrt{3}\)
b) 3\(\sqrt{2}\) +4\(\sqrt{8}\) - \(\sqrt{18}\)
= \(\sqrt{18}+8\sqrt{2}-\sqrt{18}\)
= \(8\sqrt{2}\)