![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1)Đặt \(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
\(A>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)(có 100 phân số)
\(A>\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}\)
\(A>\frac{100}{10}=10\left(đpcm\right)\)
2)\(A=\frac{\sqrt{x}-2010}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2011}{\sqrt{x+1}}=1-\frac{2011}{\sqrt{x}+1}\)
Để A đạt giá trị nhỏ nhất thì
\(1-\frac{2011}{\sqrt{x}+1}\) đạt GTNN
\(\Leftrightarrow\frac{2011}{\sqrt{x}+1}\) đạt GTLN
\(\Leftrightarrow\sqrt{x}+1\) đạt GTNN
\(\Leftrightarrow\sqrt{x}\) đạt GTNN
\(\Leftrightarrow x=0\)
\(\Rightarrow MIN_A=\frac{-2010}{1}=-2010\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
a, 1/3 + 1/2 : x = -4
=> 1/2 : x = -4 - 1/3
=> 1/2 : x = -13/3
=> x = 1/2 ; -13/3
=> x = -3/26
Vậy x = -3 / 26
Bài 2:
b, x2 - 4x = 0
=> x.(x - 4) =0
=> x=0 hoặc x - 4 = 0
x - 4= 0 => x=4
Vậy x=0 và x=4
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)
2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)
3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)
4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)
\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)
Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)
Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Thay x= -1/2 vào A:
\(A=3\left|-\frac{1}{2}\right|^2-4\left|-\frac{1}{2}\right|+5\)
\(=\frac{3}{4}-2+5\)
\(=3,75\)
Thay x=4 vào B:
\(B=2\left|4-2\right|+3\left|1-4\right|\)
\(=2\cdot2+3\cdot3\)
\(=10\)
---------------
|x| = 1/2 => x= +- 1/2
Th1: x=-1/2
Thay x=-1/2 vào C:
\(C=\frac{5\left(-\frac{1}{2}\right)^2-7\cdot\left(-\frac{1}{2}\right)+1}{3\cdot\left(-\frac{1}{2}\right)-1}\)
\(=\frac{\frac{5}{4}+\frac{7}{2}+1}{-\frac{3}{2}-1}\)
\(=\frac{23}{4}:\left(-\frac{5}{2}\right)\)
\(=-\frac{23}{10}\)
Th2: x=1/2
Thay x=1/2 vào C:
\(C=\frac{5\cdot\frac{1}{2}^2-7\cdot\frac{1}{2}+1}{3\cdot\frac{1}{2}-1}\)
\(=\frac{\frac{5}{4}-\frac{7}{2}+1}{\frac{3}{2}-1}\)
\(=\left(-\frac{5}{4}\right):\frac{1}{2}\)
\(=-\frac{5}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,|x-1|=3x+2\)
\(\Rightarrow\hept{\begin{cases}x-1=3x+2\\-\left(x-1\right)=3x+2\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{-3}{2}\\x=\frac{-1}{4}\end{cases}}\)
Vậy x = -3/2 hoặc x = -1/4
\(b,|5x|=x-12\)
\(\Rightarrow\hept{\begin{cases}5x=x-12\\-5x=x-12\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\x=2\end{cases}}\)
Vậy x = -3 hoặc x = 2
\(c,|7-x|=5x+1\)
\(\Rightarrow\hept{\begin{cases}7-x=5x+1\\-\left(7-x\right)=5x+1\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy x = 1 hoặc x = -2
(=) \(2^{2x}\)=\(2^{x+1}\)
=>2x=x+1
(=)2x-x=1
(=)x=1
=>(22)x=2x+1 =>2x=x+1 =>x=1