![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+6x+11=0\)
\(x^2+2.x.3+9+2=0\)
\(x^2+2.x.3+3^2=-2\)
\(\left(x+3\right)^2=-2\)
Vì \(\left(x+3\right)^2\ge0\forall x\)
Mà\(-2< 0\)
\(\Rightarrow x\in\varnothing\)
\(x^2+6x+11=0\)
\(x\left(x+6\right)=-11\)
Ta có bảng:
x | 1 | -1 | 11 | -11 |
x+6 | -11 | 11 | -1 | 1 |
x | -17 | 5 | -7 | -5 |
Vậy..
hok tốt!!
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a) -6x + 3(7 + 2x)
= -6x + 21 + 6x
= (-6x + 6x) + 21
= 21
b) 15y - 5(6x + 3y)
= 15y - 30 - 15y
= (15y - 15y) - 30
= -30
c) x(2x + 1) - x2(x + 2) + (x3 - x + 3)
= 2x2 + x - x3 - 2x2 + x3 - x + 3
= (2x2 - 2x2) + (x - x) + (-x3 + x3) + 3
= 3
d) x(5x - 4)3x2(x - 1) ??? :V
Bài 2:
a) 3x + 2(5 - x) = 0
<=> 3x + 10 - 2x = 0
<=> x + 10 = 0
<=> x = -10
=> x = -10
b) 3x2 - 3x(-2 + x) = 36
<=> 3x2 + 2x - 3x2 = 36
<=> 6x = 36
<=> x = 6
=> x = 5
c) 5x(12x + 7) - 3x(20x - 5) = -100
<=> 60x2 + 35x - 60x2 + 15x = -100
<=> 50x = -100
<=> x = -2
=> x = -2
![](https://rs.olm.vn/images/avt/0.png?1311)
a ,( x2 -5 ) x ( x2 +9) x( -11-8x) =0
=> x2 -5 = 0 ; x2 + 9 = 0 hoặc -11-8 x =0 .
- => x2 = 5 ; x2 = -9 hoặc x = \(\frac{-11}{8}\)=> x = +\(\sqrt{5}\)và -\(\sqrt{5}\)hoặc x=\(\frac{-11}{8}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : x3 + 6x2 + 6x + 1 = 0
=> x3 + 6x2.1 + 6x.12 + 13 = 0
=> (x + 1)3 = 0
=> x + 1 = 0
=> x = -1
X^3+6x^2+6x+1=0
=>x^3+6x^2x1+6xx1^2+1^3=0
=>(x+1)^3=0
=> x+1=0
=>-1
![](https://rs.olm.vn/images/avt/0.png?1311)
b
\(\left|6+x\right|\ge0;\left(3+y\right)^2\ge0\Rightarrow\left|6+x\right|+\left(3+y\right)^2\ge0\)
Suy ra \(\left|6+x\right|+\left(3+y\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}6+x=0\\3+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-6\\y=-3\end{cases}}\)
a
Ta có:\(\left|3x-12\right|=3x-12\Leftrightarrow3x-12\ge0\Leftrightarrow3x\ge12\Leftrightarrow x\ge4\)
\(\left|3x-12\right|=12-3x\Leftrightarrow3x-12< 0\Leftrightarrow3x< 12\Leftrightarrow x< 4\)
Với \(x\ge4\) ta có:
\(3x-12+4x=2x-2\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=2\left(KTMĐK\right)\)
Với \(x< 4\) ta có:
\(12-3x+4x=2x-2\)
\(\Rightarrow10=x\left(KTMĐK\right)\)
x^2 + 6x + 11 = 0
x^2 + 6x + 9 + 2 = 0
(x+3)^2 + 2 = 0
Mà (x+3)^2 + 2 > 0 với mọi x
=> pt vô ngiệm
Vậy .........
Hok tốt
x2 + 6x + 11 = 0
x . (x + 6) = 11
* x = 11
* x + 6 = 11
x = 11 - 6
x = 5
Vậy x = 11 hoặc x = 5