\(\sqrt{8x}-\sqrt{200x}+5\sqrt{x}=-20\) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Lời giải:
a. ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow 2\sqrt{2x}-10\sqrt{2x}+5\sqrt{x}=-20$

$\Leftrightarrow 5\sqrt{x}-8\sqrt{2x}=-20$

$\Leftrightarrow \sqrt{x}(5-8\sqrt{2})=-20$

$\Leftrightarrow \sqrt{x}=\frac{20}{8\sqrt{2}-5}$

$\Rightarrow x=(\frac{20}{8\sqrt{2}-5})^2$

b. ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow 3\sqrt{5x}-5\sqrt{3x}+4\sqrt{x}=10$

$\Leftrightarrow \sqrt{x}(3\sqrt{5}-5\sqrt{3}+4)=10$

$\Leftrightarrow \sqrt{x}=\frac{10}{3\sqrt{5}-5\sqrt{3}+4}$

$\Rightarrow x=(\frac{10}{3\sqrt{5}-5\sqrt{3}+4})^2$

25 tháng 6 2018

a) \(2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\) (*)

đk: x >/ 0

(*) \(\Leftrightarrow2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)

\(\Leftrightarrow13\sqrt{2x}=28\) \(\Leftrightarrow\sqrt{2x}=\dfrac{28}{13}\Leftrightarrow2x=\left(\dfrac{28}{13}\right)^2\Leftrightarrow x=\dfrac{392}{169}\left(N\right)\)

Kl: \(x=\dfrac{392}{169}\)

b) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\) (*)

đk: x >/ 5

(*) \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\Leftrightarrow x-5=4\Leftrightarrow x=9\left(N\right)\)

Kl: x=9

c) \(\sqrt{\dfrac{3x-2}{x+1}}=2\) (*)

Đk: \(\left[{}\begin{matrix}x< -1\\x\ge\dfrac{2}{3}\end{matrix}\right.\)

(*) \(\Leftrightarrow\dfrac{3x-2}{x+1}=4\Leftrightarrow3x-2=4x+4\Leftrightarrow x=-6\left(N\right)\)

Kl: x=-6

d) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\) (*)

Đk: \(x\ge\dfrac{4}{5}\)

(*) \(\Leftrightarrow\sqrt{5x-4}=2\sqrt{x+2}\Leftrightarrow5x-4=4x+8\Leftrightarrow x=12\left(N\right)\)

Kl: x=12

9 tháng 6 2019

\(a,=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}=-5\sqrt{5}\)

\(\sqrt{29^2-20^2}=\sqrt{\left(29-20\right)\left(29+20\right)}=\sqrt{3^2.7^2}=21\)

9 tháng 6 2019

\(\text{Đặt: }\)\(\hept{\begin{cases}\sqrt{4-\sqrt{15}}=a\\\sqrt{4+\sqrt{15}}=b\end{cases}}\)\(\text{cần tính: a-b}\)

\(\hept{\begin{cases}ab=\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}=1\\a^2+b^2=8\end{cases}}\Rightarrow\left(a-b\right)^2=6\Rightarrow a-b=-\sqrt{6}\left(vì:a< b\right)\)

12 tháng 9 2020

a) Ta có: \(\sqrt{4x-8}+5\sqrt{x-2}-\sqrt{9x-18}=20\)       \(\left(ĐK:x\ge2\right)\)

        \(\Leftrightarrow\sqrt{4}.\sqrt{x-2}+5\sqrt{x-2}-\sqrt{9}.\sqrt{x-2}=20\)

        \(\Leftrightarrow2.\sqrt{x-2}+5\sqrt{x-2}-3.\sqrt{x-2}=20\)

        \(\Leftrightarrow4.\sqrt{x-2}=20\)

        \(\Leftrightarrow\sqrt{x-2}=5\)

        \(\Leftrightarrow x-2=25\)

        \(\Leftrightarrow x=27\left(TM\right)\)

Vậy \(S=\left\{27\right\}\)

12 tháng 9 2020

a, PT <=> \(2\sqrt{x-2}+5\sqrt{x-2}-\sqrt{9\left(x-2\right)}=20\)

\(2\sqrt{x-2}+5\sqrt{x-2}-\sqrt{9}\sqrt{x-2}=20\)

\(\left(2+5-3\right)\sqrt{x-2}=20\)

\(4\sqrt{x-2}=20\Leftrightarrow\sqrt{x-2}=5\Leftrightarrow x-2=25\Leftrightarrow x=27\)

2 tháng 10 2019

mầy câu 1;3;;4;5 cách làm nhu nhau(nhân liên hop hoac bình phuong lên)

1.

\(DK:x\in\left[-4;5\right]\)

\(\Leftrightarrow\sqrt{x-5}+\left(\sqrt{x+4}-3\right)=0\)

\(\Leftrightarrow\sqrt{x-5}+\frac{x-5}{\sqrt{x+4}+3}=0\)

\(\Leftrightarrow\sqrt{x-5}\left(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}\right)=0\)

Vi \(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}>0\)

\(\Rightarrow\sqrt{x-5}=0\)

\(x=5\left(n\right)\)

Vay nghiem cua PT la \(x=5\)

2 tháng 10 2019

2.

\(DK:x\ge0\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)

\(\Leftrightarrow|\sqrt{x}-2|+|\sqrt{x}-3|=1\)

Ta co:

\(|\sqrt{x}-2|+|\sqrt{x}-3|=|\sqrt{x}-2|+|3-\sqrt{x}|\ge|\sqrt{x}-2+3-\sqrt{x}|=1\)

Dau '=' xay ra khi \(\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)\ge0\)

TH1:

\(\hept{\begin{cases}\sqrt{x}-2\ge0\\3-\sqrt{x}\ge0\end{cases}\Leftrightarrow4\le x\le9\left(n\right)}\)

TH2:(loai)

Vay nghiem cua PT la \(x\in\left[4;9\right]\)