Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : |17x - 5| - |17x + 5| = 0
Mà |17x - 5| \(\ge\)0 ; |17x + 5| \(\ge\) 0
Nên \(\hept{\begin{cases}\left|17x-5\right|=0\\\left|17x+5\right|=0\end{cases}}\)
<=>\(\hept{\begin{cases}17x-5=0\\17x+5=0\end{cases}}\)
<=> \(\hept{\begin{cases}17x=5\\17x=-5\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{5}{17}\\x=-\frac{5}{17}\end{cases}}\)
Mà x ko thể đồng thời bằng 2 giá trị
Nên x thuộc rỗng
a) 0,75 : 4,5 = \(\frac{1}{15}\) : 2x
=> \(\frac{0,75}{4,5}\) = \(\frac{\frac{1}{15}}{2x}\)
=> 0,75 . 2x = \(\frac{1}{15}\) . 4,5
=> 0,75 . 2x = 0,3
=> 2x = 0,3 : 0,75
=> 2x = 0,4
=> x = 0,4 : 2
=>x = 0,2
a.
\(\left(x+\frac{1}{2}\right)\times\left(x-\frac{3}{4}\right)=0\)
TH1:
\(x+\frac{1}{2}=0\)
\(x=-\frac{1}{2}\)
TH2:
\(x-\frac{3}{4}=0\)
\(x=\frac{3}{4}\)
Vậy \(x=-\frac{1}{2}\) hoặc \(x=\frac{3}{4}\)
b.
\(\left(\frac{1}{2}x-3\right)\times\left(\frac{2}{3}x+\frac{1}{2}\right)=0\)
TH1:
\(\frac{1}{2}x-3=0\)
\(\frac{1}{2}x=3\)
\(x=3\div\frac{1}{2}\)
\(x=3\times2\)
\(x=6\)
TH2:
\(\frac{2}{3}x+\frac{1}{2}=0\)
\(\frac{2}{3}x=-\frac{1}{2}\)
\(x=-\frac{1}{2}\div\frac{2}{3}\)
\(x=-\frac{1}{2}\times\frac{3}{2}\)
\(x=-\frac{3}{4}\)
Vậy \(x=6\) hoặc \(x=-\frac{3}{4}\)
c.
\(\frac{2}{3}-\frac{1}{3}\times\left(x-\frac{3}{2}\right)-\frac{1}{2}\times\left(2x+1\right)=5\)
\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
\(\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5-\frac{2}{3}\)
\(-\frac{4}{3}x=\frac{13}{3}\)
\(x=\frac{13}{3}\div\left(-\frac{4}{3}\right)\)
\(x=\frac{13}{3}\times\left(-\frac{3}{4}\right)\)
\(x=-\frac{13}{4}\)
d.
\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)
\(4x-x-\frac{1}{2}=2x-\frac{1}{2}+5\)
\(4x-x-2x=\frac{1}{2}-\frac{1}{2}+5\)
\(x=5\)
<=> |17x - 5| = |17x + 5|
=> 17x - 5 = 17x + 5 hoặc 17x - 5 = -17x - 5
=> 0x = 10(loại) hoặc 34x = 0
<=> x = 0.
a) \(\left|x+\frac{1}{2}\right|=\left|2x+3\right|\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+\frac{1}{2}=2x+3\\x+\frac{1}{2}=-\left(2x+3\right)\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}2x-x=\frac{1}{2}-3\\x+\frac{1}{2}=-2x-3\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{-5}{2}\\x+2x=-3-\frac{1}{2}\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{-5}{2}\\3x=\frac{-7}{2}\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{-5}{2}\\x=\frac{-7}{6}\end{array}\right.\)
Vậy \(x\in\left\{\frac{-5}{2};\frac{-7}{6}\right\}\)
\(\left|x+\frac{1}{2}\right|=\left|2x+3\right|\)
\(Ta\) \(có\): \(x+\frac{1}{2}=2x+3\)
\(x+\frac{1}{2}=x+x+3\\\)
\(x+\frac{1}{2}=x+\left(x+3\right)\)
\(\Rightarrow\frac{1}{2}=x+3\)
\(\Rightarrow x=\frac{1}{2}-3\)
\(\Rightarrow x=-\frac{5}{2}\)
Vậy \(x=-\frac{5}{2}\)
b, \(\left|x+\frac{1}{5}\right|+\left|x+\frac{2}{5}\right|+\left|x+1\frac{2}{5}\right|=4x\)
\(Ta\) \(có\)
\(x+\frac{1}{5}+x+\frac{2}{5}+x+1\frac{2}{5}\)\(=4x\)
\(3x+\left(\frac{1}{5}+\frac{2}{5}+1\frac{2}{5}\right)=4x\)
\(3x+2=4x\)
\(3x+2=3x+x\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
a: =>|5x+4|=19
=>5x+4=19 hoặc 5x+4=-19
=>5x=15 hoặc 5x=-23
=>x=3 hoặc x=-23/5
b: =>3|2x-9|=33
=>|2x-9|=11
=>2x-9=11 hoặc 2x-9=-11
=>2x=20 hoặc 2x=-2
=>x=10 hoặc x=-1
d: =>|17x-5|=|17x+5|
=>17x-5=17x+5 hoặc 17x-5=-17x-5
=>34x=0
hay x=0
\(x\) sẽ xảy ra 2 trường hợp:
TH1 : \(\left|17x-5\right|=\left|17x+5\right|=0\)
Ta có : \(\left|17x-5\right|\ge0\) với mọi x
\(\left|17x+5\right|\ge0\) với mọi x
Nên \(\left|17x-5\right|-\left|17x+5\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}17x-5=0\\17x+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}17x=5\\17x=-5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{17}\\x=-\dfrac{5}{17}\end{matrix}\right.\)
\(\Rightarrow\) Ở trường hợp này không tìm được giá trị của \(x\)
TH2 : \(\left|17x-5\right|=\left|17x-5\right|\)
Ở TH2 chúng ta cũng có 2 trường hợp để xảy ra.
1/ \(17x-5=17x+5\)
Rõ ràng ta thấy ở TH này không tìm được giá trị của \(x\) (loại)
2/ \(\left|17x-5\right|=17x+5\)
Rõ ràng ta thấy : \(x=0\) (nhận)
\(\left|17x+5\right|=17x-5\)
Nếu \(x=0\) thì \(\left|17x+5\right|=5\) và \(17x-5=-5\)
Ta thấy \(\left|17x+5\right|\ne17x-5\) (không tìm được día trị của \(x\))
Nếu \(x>0\) thì \(\left|17x+5\right|\) luôn luôn lớn hơn \(17x-5\)
\(\Rightarrow\) Không tìm được giá trị của \(x\)
Vậy \(x=0\)
Thử lại :
\(\left|17x-5\right|-\left|17x+5\right|=\left|17.0-5\right|-\left|17.0+5\right|=5-5=0\) (đúng)
~ học tốt ~
có sai đề ko bạn nếu ko sai đề thì mik nghĩ bài này có nhiều đáp án đấy
x= -2 hoặc x=0. Đảm bảo đúng!