Bài 1: Tìm x biết :

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2021

B1.

\(a,5x\left(x-1\right)=x-1\)

\(\Leftrightarrow5x^2-5x-x+1=0\)

\(\Leftrightarrow5x^2-6x+1=0\)

\(\Leftrightarrow5x^2-5x-x+1=0\)

\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=1\end{cases}}\)

Vậy \(S=\left\{\frac{1}{5};1\right\}\)là nghiệm phương trình

\(b,2\left(x+5\right)-x^2-5x=0\)

\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2-x=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}}\)

Vậy...

\(c,x\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)

Vậy ...

\(d,3x^2-6x=0\)

\(\Leftrightarrow3x\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

Vậy...

\(e,x\left(x-6\right)+10\left(x-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x+10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\x=-10\end{cases}}}\)

Vậy...

Mỗi dòng tương đương\("\Leftrightarrow"\)thì viết xuống liên tiếp nhé chứ chị viết hàng ngang cho nó gọn

10 tháng 8 2021

Trả lời:

a) \(\frac{1}{4}x^2y+5x^3-x^2y^2=x^2\left(\frac{1}{4}y+5x-y^2\right)\)

 b) 5x ( x - 1 ) - 3y ( 1 - x ) = 5x ( x - 1 ) + 3y ( x - 1 ) = ( x - 1 )( 5x + 3y )

 c) 4x- 25 = ( 2x )2 - 52 = ( 2x - 5 )( 2x + 5 )

 d) 6x- 9x2 = 3x ( 2 - 3x )

21 tháng 10 2021

\(\left(x+5\right)\left(x^2-5x+25\right)\)

\(=\left(x+5\right)\left(x^2-5.x+5^2\right)\)

\(=x^3+5^3\)

\(=x^3+125\)

21 tháng 10 2021

3) \(27-y^3\)

\(=3^3-y^3\)

\(=\left(3-y\right)\left(9-3y+y^2\right)\)

24 tháng 8 2021

Trả lời:

a, \(x^2=6x\)

\(\Leftrightarrow x^2-6x=0\)

\(\Leftrightarrow x\left(x-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}}\)

Vậy x = 0; x = 6 là nghiệm của pt.

b, \(x^2-4x+3=0\)

\(\Leftrightarrow x^2-x-3x+3=0\)

\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}}\)

Vậy x = 1; x = 3 là nghiệm của pt.

24 tháng 8 2021

Bài 3:

a) \(x^2=6x\)

\(\Leftrightarrow x^2-6x=0\)

\(\Leftrightarrow x\left(x-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-6=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}\)

Vậy \(S=\left\{0;6\right\}\)

b) \(x^2-4x+3=0\)

\(\Leftrightarrow x^2-4x+4-1=0\)

\(\Leftrightarrow\left(x-2\right)^2-1=0\)

\(\Leftrightarrow\left(x-2-1\right)\left(x-2+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

Vậy \(S=\left\{3;1\right\}\)

24 tháng 8 2021

Trả lời:

a, 3x2y - 6xy = 3xy ( x - 2 )

b, x2 - y2 - 9x + 9y 

= ( x2 - y2 ) - ( 9x - 9y )

= ( x - y )( x + y ) - 9 ( x - y )

= ( x - y )( x + y - 9 )

c, x3 - 6x2 - y2x + 9x 

= x ( x2 - 6x - y2 + 9 )

= x [ ( x2 - 6x + 9 ) - y2 ]

= x [ ( x - 3 )2 - y2 ]

= x ( x - 3 - y )( x - 3 + y )

24 tháng 8 2021

3x2y - 6xy = 3xy( x - 2 )

x2 - y2 - 9x + 9y = ( x - y )( x + y ) - 9( x - y ) = ( x - y )( x + y - 9 )

x3 - 6x2 - y2x + 9x = x( x2 - 6x - y2 + 9 ) = x[ ( x - 3 )2 - y2 ] = x( x - y - 3 )( x + y - 3 )

24 tháng 8 2021

Trả lời:

a, \(-xy.\left(x^2+2xy-3\right)=-x^3y-2x^2y^2+3xy\)

b, \(\left(12x^6y^5-3x^3y^4+4x^2y\right):6x^2y\)

\(=12x^6y^5:6x^2y^2-3x^3y^4:6x^2y+4x^2y+6x^2y\)

\(=2x^4y^3-\frac{1}{2}xy^3+\frac{2}{3}\)

NM
24 tháng 8 2021

a.\(\left(-xy\right)\left(x^2+2xy-3\right)=-x^3y-2x^2y^2+6xy\)

b.\(\left(12x^6y^5-3x^3y^4+4x^2y\right):6x^2y=2x^4y^4-\frac{1}{2}xy^3+\frac{2}{3}\)

21 tháng 10 2021

\(\left(5x-y\right)^2\)

\(=25x^2-10xy+y^2\)

21 tháng 10 2021

\(\left(5x-y\right)^2\)

\(=25x^2-10xy+y^2\)

10 tháng 8 2021

Trả lời:

a) x+ 4y+ 4xy = x2 + 2.x.2y + (2y)2 = ( x + 2y )2

b) \(\frac{1}{64}-27x^3=\left(\frac{1}{4}\right)^3-\left(3x\right)^3=\left(\frac{1}{4}-3x\right)\left(\frac{1}{16}+\frac{3}{4}x+9x^2\right)\)

c) x- 6x+ 12x - 8 = x3 - 3.x2.2 + 3.x.22 - 23 = ( x - 2 )3 

d) x-  x - y- y = ( x2 - y2 ) - ( x + y ) = ( x - y )( x + y ) - ( x + y ) = ( x + y )( x - y - 1 )

e) 5x - 5y + ax  - ay = ( 5x - 5y ) + ( ax - ay ) = 5 ( x - y ) + a ( x - y ) = ( x - y )( 5 + a )

24 tháng 2 2020

a, ĐKXĐ : \(x-1\ne0\)

=> \(x\ne1\)

TH1 : \(x-2\ge0\left(x\ge2\right)\)

=> \(\left|x-2\right|=x-2=1\)

=> \(x=3\left(TM\right)\)

- Thay x = 3 vào biểu thức P ta được :

\(P=\frac{3+2}{3-1}=\frac{5}{2}\)

TH2 : \(x-2< 0\left(x< 2\right)\)

=> \(\left|x-2\right|=2-x=1\)

=> \(x=1\left(KTM\right)\)

Vậy giá trị của P là \(\frac{5}{2}\) .

24 tháng 2 2020

a) \(P=\frac{x+2}{x-1}\) \(\left(ĐKXĐ:x\ne1\right)\)

Ta có: \(\left|x-2\right|=1\text{⇔}\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\) (loại x = 1 vì x ≠ 1)

Thay \(x=3\) vào P, ta có:

\(P=\frac{3+2}{3-2}=\frac{5}{1}=5\)

Vậy P = 5 tại x = 3.

b) \(Q=\frac{x-1}{x}+\frac{2x+1}{x^2+x}=\frac{x-1}{x}+\frac{2x+1}{x\left(x+1\right)}=\frac{x^2-1}{x\left(x+1\right)}+\frac{2x+1}{x\left(x+1\right)}\) (ĐKXĐ: x ≠ 0, x ≠ -1)

\(=\frac{x^2+2x}{x\left(x+1\right)}=\frac{x\left(x+2\right)}{x\left(x+1\right)}=\frac{x+2}{x+1}\)