\(f\left(x\right)=x^2-20...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2017

\(A=\left(\frac{1+i}{1-i}\right)^{11}=\left(i\right)^{11}=i\cdot\left(i^2\right)^5=-i\)

\(B=\left(\frac{2i}{1+i}\right)^8=\left(1+i\right)^8=\left[\left(1+i\right)^2\right]^4=\left(2i\right)^4=16\)

\(\Rightarrow\overline{z}=16-i\Leftrightarrow z=16+i\)

Vậy \(\left|\overline{z}+iz\right|=\left|15+15i\right|=15\sqrt{2}\)

15 tháng 6 2017

vui Dạ cảm ơn ạ

27 tháng 4 2017

a) Thay các tọa độ x ; y ; z trong phương trình tham số của d vào phương trình (α) ta có:

3(12 + 4t) +5(9 + 3t) - (1 + t) = 0

⇔ 26t + 78 = 0 ⇔ t = -3.

Tức là d ∩ (α) = M(0 ; 0 ; -2).

Trong trường hợp này d cắt (α) tại điểm M.

b) Thay các tọa độ x ; y ; z trong phương trình tham số của d vào phương trình (α) ta có:

(1 + t) + 3.(2 - t) + (1 + 2t) + 1 = 0

⇔ 0.t + t = 9, phương trình vô nghiệm.

Chứng tỏ d và (α) không cắt nhau., ta có d // (α).

c) Thay các tọa độ x ; y ; z trong phương trình tham số của d vào phương trình (α) ta có:

(1 + 1) + (1+ 2t) + (2 - 3t) - 4 = 0

⇔ 0t + 0 = 0,phương trình này có vô số nghiệm, chứng tỏ d ⊂ (α) .


AH
Akai Haruma
Giáo viên
10 tháng 2 2017

Thề là bài của bạn Kirito làm mình không hiểu gì hết. Đáp án cuối cùng của bạn cũng sai nốt, tính tích phân thì ra giá trị cụ thể chứ làm gì còn $c$

Lời giải:

Ta có \(I=\underbrace{\int ^{1}_{0}x^2dx}_{A}+\underbrace{\int ^{1}_{0}x^3\sqrt{1-x^2}dx}_{B}\)

Xét \(A=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^3}{3}=\frac{1}{3}\)

Xét \(B=\frac{1}{2}\int ^{1}_{0}x^2\sqrt{1-x^2}d(x^2)\)

Đặt \(\sqrt{1-x^2}=t\Rightarrow x^2=1-t^2\). Khi đó

\(B=-\frac{1}{2}\int ^{1}_{0}(1-t^2)td(1-t^2)=\int ^{1}_{0}t^2(1-t^2)dt=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\left ( \frac{t^3}{3}-\frac{t^5}{5} \right )=\frac{2}{15}\)

\(\Rightarrow I=A+B=\frac{7}{15}\)

10 tháng 2 2017

Chắc bạn học lớp 12 nhỉ???hihi

Đ/A:

\(I=\int\limits^1_0x^2\left(1+x\sqrt{1-x^2}\right)dx=\int\limits^1_0x^2dx+\int\limits^1_0x^3\sqrt{1-x^2}dx\)

\(I_1=\int\limits^1_0x^2dx=\frac{x^3}{3}\)|\(_0^1=\frac{1}{3}\)

\(I_2=\int\limits^1_0x^3\sqrt{1-x^2}dx\)

Đặt \(t=\sqrt{1-x^2}\Rightarrow x^2=1-t^2\Rightarrow xdx\Rightarrow tdt\)

Đổi cận: \(x=0\Rightarrow t=1;x=1\Rightarrow t=0\)

\(\Rightarrow I_2=-\int\limits^1_0\left(1-t^2\right)t^2dt=\int\limits^1_0\left(t^2-t^4\right)dt=\left(\frac{t^3}{3}-\frac{t^5}{5}\right)\)|\(_0^1=\frac{2}{15}\)

Vậy \(I=I_1+I_2=\frac{7}{5}\)

Đặt \(u=x\Rightarrow du=dx;dv=c^{2x}\) chọn \(v=\frac{1}{2}c^{2x}\)

\(\Rightarrow\int\limits^1_0xc^{2x}dx=\frac{x}{2}c^{2x}\)|\(_0^1-\frac{1}{2}\int\limits^1_0c^{2x}dx=\frac{c^2}{2}-\frac{1}{4}c^{2x}\)|\(_0^1=\frac{c^2+1}{4}\)

Vậy \(I=\frac{3c^2+7}{2}\)

6 tháng 4 2017

a) Đường thẳng d đi qua M1( -3 ; -2 ; 6) và có vectơ chỉ phương (2 ; 3 ; 4).

Đường thẳng d' đi qua M2( 5 ; -1 ; 20) và có vectơ chỉ phương (1 ; -4 ; 1).

Ta có = (19 ; 2 ; -11) ; = (8 ; 1 ; 14)

= (19.8 + 2 - 11.4) = 0

nên d và d' cắt nhau.

Nhận xét : Ta nhận thấy , không cùng phương nên d và d' chỉ có thể cắt nhau hoặc chéo nhau.

Xét hệ phương trình:

Từ (1) với (3), trừ vế với vế ta có 2t = 6 => t = -3, thay vào (1) có t' = -2, từ đó d và d' có điểm chung duy nhất M(3 ; 7 ; 18). Do đó dd' cắt nhau.

b) Ta có : (1 ; 1 ; -1) là vectơ chỉ phương của d(2 ; 2 ; -2) là vectơ chỉ phương của d' .

Ta thấy cùng phương nên d và d' chỉ có thể song song hoặc trùng nhau.

Lấy điểm M(1 ; 2 ; 3) ∈ d ta thấy M d' nên dd' song song.


17. Gọi \(z_1\), \(z_2\) là các nghiệm của pt \(z^2+4z+5=0\) . Đặt \(w=\left(1+z_1\right)^{100}+\left(1+z_2\right)^{100}\) . Khi đó A. \(w=2^{50}i\) B. \(w=-2^{51}\) C. \(w=2^{51}\) D. \(w=-2^{50}i\) 14. Trong mp tọa độ Oxy, gọi M là điểm biểu diễn số phức \(z=3-4i\) ; M' là điểm biểu diễn cho số phức \(z'=\frac{1+i}{2}z\) . Tính diện tích \(\Delta OMM'\) A. \(\frac{25}{4}\) B. \(\frac{25}{2}\) C. \(\frac{15}{4}\) D. \(\frac{15}{2}\) 10....
Đọc tiếp

17. Gọi \(z_1\), \(z_2\) là các nghiệm của pt \(z^2+4z+5=0\) . Đặt \(w=\left(1+z_1\right)^{100}+\left(1+z_2\right)^{100}\) . Khi đó

A. \(w=2^{50}i\)

B. \(w=-2^{51}\)

C. \(w=2^{51}\)

D. \(w=-2^{50}i\)

14. Trong mp tọa độ Oxy, gọi M là điểm biểu diễn số phức \(z=3-4i\) ; M' là điểm biểu diễn cho số phức \(z'=\frac{1+i}{2}z\) . Tính diện tích \(\Delta OMM'\)

A. \(\frac{25}{4}\)

B. \(\frac{25}{2}\)

C. \(\frac{15}{4}\)

D. \(\frac{15}{2}\)

10. TÌm 2 số thực \(x\)\(y\) thỏa mãn \(\left(2x-3yi\right)+\left(1-3i\right)=x+6i\) với \(i\) là đơn vị ảo.

A. \(x=-1;\) \(y=-3\)

B. \(x=-1;\) \(y=-1\)

C. \(x=1;\) \(y=-1\)

D.\(x=1;\) \(y=-3\)

6. Hình tròn tâm \(I\left(-1;2\right)\) bán kính \(r=5\) là tập hợp điểm biểu diễn hình học của các số phức \(z\) thỏa mãn

A. \(\left\{{}\begin{matrix}z=\left(x+1\right)-\left(y-2\right)i\\\left|z\right|\ge5\end{matrix}\right.\)

B. \(\left\{{}\begin{matrix}z=\left(x+1\right)+\left(y-2\right)i\\\left|z\right|=5\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}z=\left(x-1\right)+\left(y+2\right)i\\\left|z\right|\le\sqrt{5}\end{matrix}\right.\)

D. \(\left\{{}\begin{matrix}z=\left(x+1\right)-\left(y-2\right)i\\\left|z\right|\le5\end{matrix}\right.\)

3. Xét số phức thỏa mãn \(\left|z-2-4i\right|=\left|z-2i\right|\) . Tìm GTNN của \(\left|z\right|\)

A. 4

B. \(2\sqrt{2}\)

C. 10

D. 8

2
NV
22 tháng 6 2020

10.

\(\left(2x-3yi\right)+\left(1-3i\right)=x+6i\)

\(\Leftrightarrow\left(2x+1\right)+\left(-3y-3\right)i=x+6i\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=x\\-3y-3=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

6.

\(\left(x+1\right)^2+\left(y-2\right)^2\le25\)

\(\Rightarrow\left|\left(x+1\right)-\left(y-2\right)i\right|\le5\)

\(\Rightarrow z\) là số phức: \(\left\{{}\begin{matrix}z=\left(x+1\right)-\left(y-2\right)i\\\left|z\right|\le5\end{matrix}\right.\)

Lưu ý: hình tròn khác đường tròn. Phương trình đường tròn là \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\)

Pt hình tròn là: \(\left(x-a\right)^2+\left(y-b\right)^2\le R^2\)

3.

\(z=x+yi\Rightarrow\left|x-2+\left(y-4\right)i\right|=\left|x+\left(y-2\right)i\right|\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y-4\right)^2=x^2+\left(y-2\right)^2\)

\(\Leftrightarrow-4x-8y+20=-4y+4\)

\(\Leftrightarrow x=-y+4\)

\(\left|z\right|=\sqrt{x^2+y^2}=\sqrt{\left(-y+4\right)^2+y^2}=\sqrt{2y^2-8y+16}\)

\(\left|z\right|=\sqrt{2\left(x-2\right)^2+8}\ge\sqrt{8}=2\sqrt{2}\)

NV
22 tháng 6 2020

17.

\(z^2+4z+4=-1\Leftrightarrow\left(z+2\right)^2=i^2\Rightarrow\left\{{}\begin{matrix}z_1=-2+i\\z_2=-2-i\end{matrix}\right.\)

\(\Rightarrow w=\left(-1+i\right)^{100}+\left(-1-i\right)^{100}=\left(1-i\right)^{100}+\left(1+i\right)^{100}\)

Ta có: \(\left(1-i\right)^2=1+i^2-2i=-2i\)

\(\Rightarrow\left(1-i\right)^{100}=\left(1-i\right)^2.\left(1-i\right)^2...\left(1-i\right)^2\) (50 nhân tử)

\(=\left(-2i\right).\left(-2i\right)...\left(-2i\right)=\left(-2\right)^{50}.i^{50}=2^{50}.\left(i^2\right)^{25}=-2^{50}\)

Tượng tự: \(\left(1+i\right)^2=1+i^2+2i=2i\)

\(\Rightarrow\left(1+i\right)^{100}=2i.2i...2i=2^{50}.i^{50}=-2^{50}\)

\(\Rightarrow w=-2^{50}-2^{50}=-2^{51}\)

18.

\(z'=\left(\frac{1+i}{2}\right)\left(3-4i\right)=\frac{7}{2}-\frac{1}{2}i\)

\(\Rightarrow M\left(3;-4\right)\) ; \(M'\left(\frac{7}{2};-\frac{1}{2}\right)\)

\(S_{OMM'}=\frac{1}{2}\left|\left(x_M-x_O\right)\left(y_{M'}-y_O\right)-\left(x_{M'}-x_O\right)\left(y_M-y_O\right)\right|\)

\(=\frac{1}{2}\left|3.\left(-\frac{1}{2}\right)-\frac{7}{2}.\left(-4\right)\right|=\frac{25}{4}\)

24 tháng 12 2017

\(4^{x^2-x}+2^{x^2-x+1}=3\)

<=> \(4^{x^2-x}+2^{x^2-x}.2=3\)

đặt \(2^{x^2-x}=t\) đk: t > 0

pttt: t2 + 2t - 3 = 0

=> \(\left[{}\begin{matrix}t=1\\t=-3\left(loại\right)\end{matrix}\right.\)

t = 1 <=> \(2^{x^2-x}=1\) <=> x2-x = 0

<=> \(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

24 tháng 12 2017

♥♥♥ ✌

19 tháng 9 2019

Bài này thì chia 2 vế của giả thiết cho z2 ta thu được:

\(\frac{x}{z}+2.\frac{x}{z}.\frac{y}{z}+\frac{y}{z}=4\Leftrightarrow a+2ab+b=4\)

(đặt \(a=\frac{x}{z};b=\frac{y}{z}\)).Mà ta có: \(4=a+2ab+b\le a+b+\frac{\left(a+b\right)^2}{2}\Rightarrow a+b\ge2\) Lại có:

\(P=\frac{\left(\frac{x}{z}+\frac{y}{z}\right)^2}{\left(\frac{x}{z}+\frac{y}{z}\right)^2+\left(\frac{x}{z}+\frac{y}{z}\right)}+\frac{3}{2}.\frac{1}{\left(\frac{x}{z}+\frac{y}{z}+1\right)^2}\) (chia lần lượt cả tử và mẫu của mỗi phân thức cho z2)

\(=\frac{\left(a+b\right)^2}{\left(a+b\right)^2+\left(a+b\right)}+\frac{3}{2\left(a+b+1\right)^2}\).. Tiếp tục đặt \(t=a+b\ge2\) thu được:

\(P=\frac{t}{\left(t+1\right)}+\frac{3}{2\left(t+1\right)^2}=\frac{2t\left(t+1\right)+3}{2\left(t+1\right)^2}\)\(=\frac{2t^2+2t+3}{2\left(t+1\right)^2}-\frac{5}{6}+\frac{5}{6}\)

\(=\frac{2\left(t-2\right)^2}{12\left(t+1\right)^2}+\frac{5}{6}\ge\frac{5}{6}\)

Vậy...

P/s: check xem em có tính sai chỗ nào không:v

19 tháng 9 2019

Dấu "=" xảy ra khi nào vậy Khang ?