\(\frac{1}{2}x2^n+4x2^n=9x5^n\)

B)\(3...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2018

a) Điều kiện xác định: n khác 4

\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=\frac{n-4}{n-4}+\frac{4}{n-4}\)\(=1+\frac{4}{n-4}\)

Để B nguyên thì \(\frac{4}{n-4}\in Z\)\(\Rightarrow n-4\in U\left(4\right)=\left(1;-1;2;-2;4;-4\right)\)

\(\Rightarrow n\in\left\{5;3;6;2;8;0\right\}\)(thỏa mãn n khác 4)

Vậy .............

b) \(n\in\left\{-2;-4\right\}\)

c) \(n\in\left\{-2;-1;3;5\right\}\)

d) \(n\in\left\{0;-2;2;-4\right\}\)

e) \(n\in\left\{0;2;-6;8\right\}\)

(Bài này có 1 bạn hỏi rồi bạn nhé!!!)

Bài 2: a) Để A là phân số thì (n2 +1)(n-7) khác 0   <=> n khác 7

b) Với n = 7 thì mẫu số bằng 0  => phân số không tồn tại

c) Với n = 0 thì \(\frac{0+1}{\left(0^2+1\right)\left(0-7\right)}=\frac{1}{-7}\left(=\frac{-1}{7}\right)\)

Với n = 1 thì \(\frac{1+1}{\left(1^2+1\right)\left(1-7\right)}=\frac{2}{2\times\left(-6\right)}=\frac{-1}{6}\)

Với n = -2 thì: \(\frac{-2+1}{\left[\left(-2\right)^2+1\right]\left(-2-7\right)}=\frac{-1}{-45}=\frac{1}{45}\)

13 tháng 7 2020

Ta có :

\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=1+\frac{4}{n-4}\)

Để \(B\in Z\) thì \(\frac{4}{n-4}\in Z\)

\(\Rightarrow n-4\in\left\{\pm1;\pm2;\pm4\right\}\)

\(\Rightarrow n\in\left\{0;2;3;5;6;8\right\}\)

25 tháng 3 2018

\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)

\(\Rightarrow\)\(A< 1\) ( đpcm ) 

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

16 tháng 7 2016

S=1/1-1/4+1/4-1/7+.........+1/N-1/N+1

=1/1-(1/4-1/4)+...............+(1/N-1/N)-1/N+1

=1-1/N+1

->S<1

NHA!

16 tháng 7 2016

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n\left(n+3\right)}\)

=>\(S=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)

=>\(S=1-\frac{1}{n+3}< 1\)

Vậy S<1 (đpcm)

1 tháng 8 2018

LẠM DỤNG QUÁ NHIỀU

4 tháng 12 2017

mk năm nay học lớp 8 mà mới chỉ học công thức thôi chứ chưa học (hoặc đã học mà quên mất) nhưng chứng minh cái này mk mới chỉ học công thức thôi chứ chứng minh bài toán tổng quánthì chịu

3 tháng 10 2019

Đề sai thì phải ! Học Lớp 7 mới giải xong bài này !

\(\frac{1}{9}\cdot27^n=3^n\)

\(\frac{1}{9}\cdot\left(3^3\right)^n=3^n\)

\(\frac{1}{9}\cdot3^{3n}=3^n\)

\(\frac{1}{9}=3^n\text{ : }3^{3n}\)

\(\frac{1}{9}=3^{-2n}\)

\(\frac{1}{3^2}=\frac{1}{3^{2n}}\)


\(\Rightarrow\text{ }3^{2n}=3^2\)

\(3^{2n}-3^2=0\)

\(3\left(3^{2n-1}-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3=0\text{ ( Vô lí ) }\\3^{2n-1}-3=0\end{cases}}\)       \(\Rightarrow\text{ }3^{2n-1}=3\)          \(\Rightarrow\text{ }2n-1=1\) \(\Rightarrow\text{ }2n=2\) \(\Rightarrow\text{ }n=1\)

                Vậy \(n=1\)

3 tháng 10 2019

\(\frac{1}{9}\cdot27^n=3^n\)

\(\frac{1}{3^2}\cdot\left(3^3\right)^n=3^n\)

\(\frac{3^{3n}}{3^2}=3^n\)

\(3^{3n}=3^2\cdot3^n\)

\(3^{3n}=3^{n+2}\)

\(\Rightarrow\text{ }3n=n+2\)

\(3n-n=2\)

\(2n=2\)

\(n=2\text{ : }2\)

\(n=1\)

31 tháng 5 2019

#)Giải :

\(\frac{1}{9}.3^4.3^n=3^7\)

\(\frac{1}{9}.81.3^n=3^7\)

\(9.3^n=3^7\)

\(3^2.3^n=3^7\)

\(\Rightarrow2+n=7\)

\(\Rightarrow n=5\)

       #~Will~be~Pens~#

31 tháng 5 2019

#)Giải :

\(\frac{1}{9}.27^n=3^n\)

\(\Leftrightarrow\frac{1}{9}=\frac{3^n}{27^n}\)

\(\Leftrightarrow\frac{1}{9}=\left(\frac{1}{9}\right)^n\)

\(\Leftrightarrow n=1\)

         #~Will~be~Pens~#