Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 7
\(a,A=x^2-2x+5\)
\(=\left(x^2-2x+1\right)+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
GTNN \(A=4\) khi \(\left(x-1\right)^2=0\Rightarrow x=1\)
\(b,B=x^2-x+1\)
\(=\left(x^2-2\cdot\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(c,C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
Đặt \(x^2+5x=t\)
\(\Rightarrow C=\left(t-6\right)\left(t+6\right)\)
\(=t^2-36\)
\(\left(x^2+5x\right)^2-36\ge36\forall x\)
\(d,D=x^2+5y^2-2xy+4y-3\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)-4\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2-4\ge-4\)
Bài 6
\(\left(a-b\right)^2=a^2-2ab+b^2\)
\(=\left(a^2+2ab+b^2\right)-4ab\)
\(=\left(a+b\right)^2-4ab\)
Bài 5 :
\(a,16x^2-\left(4x-5\right)^2=15\)
\(16x^2-16x^2+40x-25-15=0\)
\(40x-40=0\)
\(40x=40\)
\(x=1\)
\(b,\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)
\(4x^2+12x+9-4x^2+4=49\)
\(12x=36\)
\(x=3\)
\(c,\left(2x+1\right)\left(2x-1\right)+\left(1-2x\right)^2=18\)
\(4x^2-1+1-4x+4x^2=18\)
\(8x^2-4x-18=0\)
\(2\left(4x^2-2x-9\right)=0\)
\(x=\frac{1-\sqrt{37}}{4}\)
\(d,2\left(x+1\right)^2-\left(x-3\right)\left(x+3\right)-\left(x-4\right)^2=0\)
\(2x^2+4x+2-x^2+9-x^2+8x-16=0\)
\(12x=4\)
\(x=\frac{1}{3}\)
3/
a/ \(A=\left(x-y\right)^2+\left(x+y\right)^2.\)
\(A=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)\)
\(A=x^2-2xy+y^2+x^2+2xy+y^2\)
\(A=2x^2+2y^2\)
b/ \(B=\left(2a+b\right)^2-\left(2a-b\right)^2\)
\(B=\left(4a^2+4ab+b^2\right)-\left(4a^2-4ab+b^2\right)\)
\(B=4a^2+4ab+b^2-4a^2+4ab-b^2\)
\(B=8ab\)
c/ \(C=\left(x+y\right)^2-\left(x-y\right)^2\)
\(C=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)
\(C=x^2+2xy+y^2-x^2+2xy-y^2\)
\(C=4xy\)
d/ \(D=\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(D=\left(4x^2-4x+1\right)-2\left(4x^2-12x+9\right)+4\)
\(D=4x^2-4x+1-8x^2+24x-18+4\)
\(D=-4x^2+20x-13\)
\(a,\left(x+2\right)^2=x^2+4x+4\)
\(b,\left(x-1\right)^2=x^2-2x+1\)
\(c,\left(x^2+y^2\right)^2=x^4+2x^2y^2+y^4\)
\(d,\left(x^3+2y^2\right)^2=x^6+4x^3y^2+4y^4\)
\(\text{a)}x^3-6x^2+12x-8\)
\(=x^3-2x^2-4x^2+8x+4x-8\)
\(=\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(4x-8\right)\)
\(=x^2\left(x-2\right)+4x\left(x-2\right)+4\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+4x+4\right)\)
\(=\left(x-2\right)\left(x+2\right)^2\)
\(\text{b)}8x^2+12x^2y+6xy^2+y^3=\left(2x+y\right)^3\)
Bài 2:
\(\text{a) }x^7+1=\left(x^{\frac{7}{3}}\right)^3+1^3=\left(x^{\frac{7}{3}}+1\right)\left[\left(x^{\frac{7}{3}}\right)^2-x^{\frac{7}{3}}+1\right]=\left(x^{\frac{7}{3}}+1\right)\left(x^{\frac{14}{3}}-x^{\frac{7}{3}}+1\right)\)
\(\text{b) }x^{10}-1=\left(x^5\right)^2-1^2=\left(x^5-1\right)\left(x^5+1\right)\)
Bài 3:
\(\text{a) }69^2-31^2=\left(69-31\right)\left(69+31\right)=38.100=3800\)
\(\text{b) }1023^2-23^2=\left(1023-23\right)\left(1023+23\right)=1000.1046=1046000\)
\(A=25x^2-20x+7\)
\(A=\left(25x^2-20x+4\right)+3\)
\(A=\left(5x-2\right)^2+3>0\)
Học tốt
Bài 1 :
\(C=2x^2-7x-13\)
\(2C=4x^2-14x-26\)
\(2C=\left(4x^2-14x+\frac{49}{4}\right)-\frac{55}{4}\)
\(2C=\left(2x-\frac{7}{2}\right)^2-\frac{55}{4}\ge\frac{-55}{4}\)
\(C=\frac{\left(2x-\frac{7}{2}\right)^2-\frac{55}{4}}{2}\ge\frac{-55}{4}:2=\frac{-55}{8}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(2x-\frac{7}{2}\right)^2=0\)
\(\Leftrightarrow\)\(x=\frac{7}{4}\)
Vậy GTNN của \(C\) là \(\frac{-55}{8}\) khi \(x=\frac{7}{4}\)
Chúc bạn học tốt ~
gtnn mà bạn