\(\dfrac{\text{4+2 /4 - 2x/}}{5}\)

Bài 2 : Tìm Max

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2017

Bài 1: Ta có: \(B=\dfrac{4+2\left|4-2x\right|}{5}\)

Do \(\left|4-2x\right|\ge0\left(\forall x\right)\Rightarrow2\left|4-2x\right|\ge0\left(\forall x\right)\)

Dấu "=" xảy ra \(\Leftrightarrow\left|4-2x\right|=0\Leftrightarrow x=2\)

\(\Rightarrow MinB=\dfrac{4+2.0}{5}=\dfrac{4}{5}\)

Vậy GTNN của \(B=\dfrac{4}{5}\Leftrightarrow x=2\)

Bài 2:a, \(A=\dfrac{12}{3+\left|5x+1\right|+\left|2y-1\right|}\)

Do \(\left|5x+1\right|\ge0\left(\forall x\right);\left|2y-1\right|\ge0\left(\forall y\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{5};y=\dfrac{1}{2}\)

\(\Rightarrow\left|5x+1\right|+\left|2y-1\right|\ge0\left(\forall x;y\right)\)

\(\Rightarrow3+\left|5x+1\right|+\left|2y-1\right|\ge3\left(\forall x;y\right)\)

\(\Rightarrow\dfrac{1}{3+\left|5x+1\right|+\left|2y-1\right|}\le\dfrac{1}{3}\left(\forall x;y\right)\)

\(\Rightarrow A=\dfrac{12}{3+\left|5x+1\right|+\left|2y-1\right|}\le4\left(\forall x;y\right)\)

Vậy Max A = 4 \(\Leftrightarrow x=-\dfrac{1}{5};y=\dfrac{1}{2}\)

b, \(B=\dfrac{5}{\left(4x^2+4x+1\right)+\left(y^2+2y+1\right)+1}=\dfrac{5}{\left(2x+1\right)^2+\left(y+1\right)^2+1}\)Bn tự cm: \(\left(2x+1\right)^2+\left(y+1\right)^2+1\ge1\left(\forall x;y\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{2};y=-1\)

Vậy ta cx dễ dàng tìm được: Max\(B=\dfrac{5}{0+0+1}=5\) \(\Leftrightarrow x=-\dfrac{1}{2};y=-1\)

a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5

=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5

=(x-2)/(2x^2-5x+5)(x-1)

 

25 tháng 3 2018

a) ĐKXĐ: x khác 0

\(x+\dfrac{5}{x}>0\)

\(\Leftrightarrow x^2+5>0\) ( luôn đúng)

Vậy bất pt vô số nghiệm ( loại x = 0)

d)

\(\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2}{8}-\dfrac{x+3}{8}\)

\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2-x-3}{8}\)

\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{-5}{8}\)

\(\Leftrightarrow2x+2-4x+4>-15\)

\(\Leftrightarrow-2x>-21\)

\(\Leftrightarrow x< \dfrac{21}{2}\)

Vậy....................

25 tháng 3 2018

a)\(x+\dfrac{5}{x}>0\left(ĐKXĐ:x\ne0\right)\)

\(\Leftrightarrow\dfrac{x^2+5}{x}>0\)

\(x^2+5>0\)

\(\Rightarrow x>0\)

d)\(\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2}{8}-\dfrac{x+3}{8}\)

\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{2x-2}{12}>\dfrac{-5}{8}\)

\(\Leftrightarrow\dfrac{-x+3}{12}>\dfrac{-5}{8}\)

\(\Leftrightarrow-x+3>-\dfrac{15}{2}\)

\(\Leftrightarrow-x>-\dfrac{21}{2}\)

\(\Leftrightarrow x< \dfrac{21}{2}\)

28 tháng 10 2018

\(I=3\left(x^2-\dfrac{5}{3}x+1\right)\)

\(I=3\left(x^2-2.x.\dfrac{5}{6}+\left(\dfrac{5}{6}\right)^2-\left(\dfrac{5}{6}\right)^2+1\right)\)

\(I=3\left[\left(x-\dfrac{5}{6}\right)^2+\dfrac{11}{36}\right]\)

\(I=3\left(x-\dfrac{5}{6}\right)^2+\dfrac{11}{12}\)

28 tháng 10 2018

mình ra là \(\dfrac{11}{36}\)mà bn

bn coi lại đi

I=3x2-5x+3

I=3(x2-\(\dfrac{5}{3}\)x+1)

I=3[x2-2.x.\(\dfrac{5}{3}\)+\(\left(\dfrac{5}{6}\right)^2\)-\(\left(\dfrac{5}{6}\right)^2\)+1]

I=3(x-\(\dfrac{5}{3}\))2+\(\dfrac{11}{36}\)

I=3(x-\(\dfrac{5}{3}\))2+\(\dfrac{11}{36}\)\(\dfrac{11}{36}\)

vậy Min I= \(\dfrac{11}{36}\)khi x =\(\dfrac{5}{3}\)

Theo mik nghĩ là vậy á

CHÚC BN HỌC TỐT

12 tháng 3 2018

bài 1:

b,\(\dfrac{x+2}{x}=\dfrac{x^2+5x+4}{x^2+2x}+\dfrac{x}{x+2}\)(ĐKXĐ:x ≠0,x≠-2)

<=>\(\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x^2+5x+4}{x\left(x+2\right)}+\dfrac{x^2}{x\left(x+2\right)}\)

=>\(x^2+4x+4=x^2+5x+4+x^2\)

<=>\(x^2-x^2-x^2+4x-5x+4-4=0\)

<=>\(-x^2-x=0< =>-x\left(x+1\right)=0< =>\left[{}\begin{matrix}x=0\left(loại\right)\\x+1=0< =>x=-1\left(nhận\right)\end{matrix}\right.\)

vậy...............

d,\(\left(x+3\right)^2-25=0< =>\left(x+3-5\right)\left(x+3+5\right)=0< =>\left(x-2\right)\left(x+8\right)=0< =>\left[{}\begin{matrix}x-2=0\\x+8=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)

vậy............

bài 3:

g,\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x^2-x-2}\)(ĐKXĐ:x khác -1,x khác 2)

<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x^2-2x+x-2}\)

<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x\left(x-2\right)+\left(x-2\right)}\)

<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)

<=>\(\dfrac{4\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{2\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)

=>\(4x-8-2x-2=x+3\)

<=>\(x=13\)

vậy..............

mấy ý khác bạn làm tương tụ nhé

chúc bạn học tốt ^ ^

23 tháng 7 2018

a ) \(\left(5x+2y\right)^2=25x^2+20xy+4y^2\)

b ) \(\left(-3x+2\right)^2=9x^2-12x+4\)

c ) \(\left(\dfrac{2}{3}x+\dfrac{1}{3}y\right)^2=\dfrac{4}{9}x^2+\dfrac{4}{9}xy+\dfrac{1}{9}y^2\)

d ) \(\left(2x-\dfrac{5}{2}y\right)^2=4x^2-10xy+\dfrac{25}{4}y^2\)

e ) \(\left(x+\dfrac{4}{3}y^2\right)^2=x^2+\dfrac{8}{3}xy^2+\dfrac{16}{9}y^4\)

f ) \(\left(2x^2+\dfrac{5}{3}y\right)^2=4x^4+\dfrac{20}{3}x^2y+\dfrac{25}{9}y^2\)

3 tháng 9 2018

pạn ơi pạn đã lm đk chưa? nếu lm đk oy cho mk xem cách lm bài 2 nhé. cảm ơn pạn nhìu lắm

a: =>5-x+6=12-8x

=>-x+11=12-8x

=>7x=1

hay x=1/7

b: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)

\(\Leftrightarrow9x+6-3x-1=12x+10\)

=>12x+10=6x+5

=>6x=-5

hay x=-5/6

d: =>(x-2)(x-3)=0

=>x=2 hoặc x=3

11 tháng 4 2017

\(\dfrac{x}{x-1}-\dfrac{2x}{x^2-1}=0\left(ĐKXĐ:x\ne\pm1\right)\\ \Leftrightarrow\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}=0\\ \Rightarrow x^2+x-2x=0\\ \Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\Rightarrow x=1\left(loại\right)\end{matrix}\right.\)

vậy phương trình có tập nghiệm là S={0}.

b)

\(\dfrac{\left(x+2\right)^2}{2x-3}-1=\dfrac{x^2+10}{2x-3}\left(ĐKXĐ:x\ne\dfrac{3}{2}\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(\left(x+2\right)^2+3-2x=x^2+10\\ \Leftrightarrow x^2+4x+4-2x-x^2=10-3\)

\(\Leftrightarrow2x+4=7\Leftrightarrow2x=7-4=3\Rightarrow x=\dfrac{3}{2}\left(loại\right)\)

vậy phương trình đã cho vô nghiệm.

c)\(\dfrac{x+5}{x-5}-\dfrac{x-5}{x+5}=\dfrac{20}{x^2-25}\left(ĐKXĐ:x\ne\pm5\right)\)

\(\Leftrightarrow\dfrac{\left(x+5\right)^2}{\left(x-5\right)\left(x+5\right)}-\dfrac{\left(x-5\right)^2}{\left(x+5\right)\left(x-5\right)}=\dfrac{20}{\left(x+5\right)\left(x-5\right)}\)

\(\Rightarrow\left(x+5\right)^2-\left(x-5\right)^2=20\)

\(\Leftrightarrow x^2+25x+25-x^2+25x-25=20\\ \Leftrightarrow50x=20\Rightarrow x=\dfrac{2}{5}\)

vậy tập nghiệm của phương trình là \(S=\left\{\dfrac{2}{5}\right\}\)

d)\(\dfrac{3x+2}{3x-2}-\dfrac{6}{2+3x}=\dfrac{9x^2}{9x^2-4}\left(ĐKXĐ:x\ne\pm\dfrac{2}{3}\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(\left(3x+2\right)^2-6\left(3x-2\right)=9x^2\\ \Leftrightarrow9x^2+12x+4-18x+12-9x^2=0\\ \Leftrightarrow16-6x=0\Leftrightarrow6x=16\Rightarrow x=\dfrac{16}{6}\)

vậy tập nghiệm của phương trình là \(S=\left\{\dfrac{16}{6}\right\}\)

e)\(\dfrac{3}{5x-1}+\dfrac{2}{3-5x}=\dfrac{4}{\left(1-5x\right)\left(5x-3\right)}\left(ĐKXĐ:x\ne\dfrac{1}{5};\dfrac{3}{5}\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(3\left(3-5x\right)+2\left(5x-1\right)=4\\ \Leftrightarrow9-15x+10x-2=4\\ \Leftrightarrow-5x=-3\Rightarrow x=\dfrac{3}{5}\left(loại\right)\)

vậy phương trình đã cho vô nghiệm.

f)

\(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\left(ĐKXĐ:x\ne\pm\dfrac{1}{4}\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(-3\left(4x+1\right)=2\left(4x-1\right)-8-6x\\ \Leftrightarrow-12x-3=8x-2-8-6x\\ \Leftrightarrow-14x=-7\Rightarrow x=\dfrac{1}{2}\)

vậy phương trình có tập nghiệm là \(S=\left\{\dfrac{1}{2}\right\}\)

g)

\(\dfrac{y-1}{y-2}-\dfrac{5}{y+2}=\dfrac{12}{y^2-4}+1\left(ĐKXĐ:y\ne\pm2\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(\left(y-1\right)\left(y+2\right)-5\left(y-2\right)=12+y^2-4\\ \Leftrightarrow y^2+y-2-5y+10=12+y^2-4\\ \Leftrightarrow-4y+8=8\Leftrightarrow-4y=0\Rightarrow y=0\)

vậy phương trình có tập nghiệm là S={0}

h)

\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\left(ĐKXĐ:x\ne\pm1\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(\left(x+1\right)^2-\left(x-1\right)^2=4\\ \Leftrightarrow x^2+2x+1-x^2+2x-1=4\\ \Leftrightarrow4x=4\Rightarrow x=1\)

vậy phương trình có tập nghiệm là S={1}.

i)

\(\dfrac{2x-3}{x+2}-\dfrac{x+2}{x-2}=\dfrac{2}{x^2-4}\left(ĐKXĐ:x\ne\pm2\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(\left(2x-3\right)\left(x-2\right)-\left(x+2\right)=2\\ \Leftrightarrow2x^2-7x+6-x^2-4x-4=2\\ \Leftrightarrow x^2-11x=0\Rightarrow\left[{}\begin{matrix}x=0\\x-11=0\Rightarrow x=11\end{matrix}\right.\)

vậy phương trình có tập nghiệm là S={0;11}

j)

\(\dfrac{x-1}{x^2-4}=\dfrac{3}{2-x}\left(ĐKXĐ:x\ne\pm2\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(x-1=-3\left(x+2\right)\Leftrightarrow x-1=-3x-6\\ \Leftrightarrow4x=5\Rightarrow x=\dfrac{5}{4}\)

vậy phương trình có tập nghiệm là \(S=\left\{\dfrac{5}{4}\right\}\)

11 tháng 4 2017

có tố chất đánh máy !!!eoeoeoeoleuleu

11 tháng 11 2017

a ) Để \(\dfrac{3}{-x^2+2x+4}\) đạt GTlN thì :

\(-x^2+2x+4\) phải đạt GTNN ( chắc ai cũng biết )

Ta có :

\(-x^2+2x+4\)

\(=-\left(x^2-2x+1-5\right)\)

\(=-\left(x-1\right)^2-5\)

Tới đây chắc bạn hỉu rồi nhỉ ?

11 tháng 11 2017

Mình cảm ơn bạn nhiều nhé.