Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Làm từng cái
(1)để có hai nghiệm: \(m^2+m+1\ne0\) ta có
\(m^2+m+1=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall m\)đúng với \(\forall m\)
(2) \(\Delta>0\Rightarrow\left(2m-3\right)^2-4\left(m-5\right)\left(m^2+m+1\right)>0\)
{để đó tý giải quyết sau }
(3) tích hai nghiệm phải dương
\(\Rightarrow x_1x_2=\dfrac{c}{a}>0\Rightarrow m-5>0\Rightarrow m>5\)
(4) tổng hai nghiệm phải dương
\(\Rightarrow-\dfrac{b}{a}>0\Rightarrow2m-3< 0\Rightarrow m< \dfrac{3}{2}\)
từ (3) (4) => không có m thỏa mãn => kết luận vô nghiệm
câu b)
có vẻ nhàn hơn
(1) \(\Delta'>0\Rightarrow9m^2-9m^2+2m-2=2m-2>0\Rightarrow m>1\)
(2)\(-\dfrac{b}{a}>0\Rightarrow m>0\)
(3) \(\dfrac{c}{a}>0\Rightarrow9m^2-2m+2>0\) đúng vơi mọi m
(1)(2)(3) nghiệm là: m>1
a)
ĐIều kiện (1)\(\Delta>0\Rightarrow\left(m+3\right)^2-4\left(m^2-1\right)\left(m^2+m\right)>0\)
ĐK(2) c/a <0 => (m^2+m)/(m^2-1) <0
Không cần giải đk (1) vì nếu (m) thủa mãn đk(2) tất nhiên thỏa mãn đk(1) do (x+3)^2 >=0
\(\dfrac{m^2+m}{m^2-1}=\dfrac{T}{M}\)
\(-1< m< 0\Rightarrow T< 0\)
\(-1< m< 1\Rightarrow M< 0\)
Để thủa mãn đk (2) cũng là giá trị m cần tìm là: \(\Rightarrow0< m< 1\)
b)
M thả mãn hệ \(\left\{{}\begin{matrix}\left(m^3+m-2\right)^2-4\left(m^2+m-5\right)\left(1\right)\\\left(m^2+m-5\right)< 0\left(2\right)\end{matrix}\right.\)
Tưng tự câu (a) Nếu (2) thủa mãn => ( 1) thỏa mãn
=> \(\left(2\right)\Rightarrow\dfrac{-1-\sqrt{21}}{2}< m< \dfrac{-1+\sqrt{21}}{2}\) cũng là giá trị m cần tìm
a) \(x^2-2x+m^2+m+3=0\)
Xét \(\Delta=1^2-\left(m^2+m+3\right)=-\left(m^2+m+2\right)=\)
\(=-\left(m+\dfrac{1}{2}\right)^2-\dfrac{7}{4}< 0\) với mọi m.
DO đó phương trình luôn vô nghiệm nên không có giá trị nào thỏa mãn.
b)
(1) a khác 0: \(m^2+m+3>0\forall m\)
(2) \(\Delta>0\Rightarrow\left(4m^2+m+2\right)^2-4m\left(m^2+m+3\right)>0\)
\(=16m^4+4m^3+13m^2-8m+4>0\)
(3) \(\dfrac{c}{a}>0\) => m > 0
(4) \(-\dfrac{b}{a}\) \(< 0\) \(\Leftrightarrow\)\(4m^2+m+2< 0\Rightarrow4\left(m+\dfrac{1}{8}\right)^2+\dfrac{31}{16}< 0\) vô lý
Kết luận không có m thỏa mãn đk đầu bài
để pt có 2 nghiệm phân biệt thì: đenta > 0
mà ddeenta = m2 - 6m - 7 > 0
giải ra ta đc: m<-1 hay m>7 (1)
áp dụng hệ thức vi-et đc x1 + x2 = m-1 và x1.x2= m+2
kết 2 biểu thức trên dễ dàng làm đc x12 + x22 = m2-4m-3
bđt trên (=) (x12+x22)/x12.x22 - 1 > 0
thay vào đc (-16m -7)/(m2+4m+4) > 0 =) m khác -2 và m<-7/16
kết hợp vs (1) =) m<-1 và m khác -2