K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

Bài 1 :

a) Ta thấy : \(\left(x^2-9\right)^2\ge0\)

                   \(\left|y-2\right|\ge0\)

\(\Leftrightarrow A=\left(x^2-9\right)^2+\left|y-2\right|-1\ge-1\)

Dấu " = " xảy ra :

\(\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\in\left\{3;-3\right\}\\y=2\end{cases}}\)

Vậy \(Min_A=-1\Leftrightarrow\left(x;y\right)\in\left\{\left(3;2\right);\left(-3;2\right)\right\}\)

b) Ta thấy : \(B=x^2+4x-100\)

\(=\left(x+4\right)^2-104\ge-104\)

Dấu " = " xảy ra :

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Vậy \(Min_B=-104\Leftrightarrow x=-4\)

c) Ta thấy : \(C=\frac{4-x}{x-3}\)

\(=\frac{3-x+1}{x-3}\)

\(=-1+\frac{1}{x-3}\)

Để C min \(\Leftrightarrow\frac{1}{x-3}\)min

\(\Leftrightarrow x-3\)max

\(\Leftrightarrow x\)max

Vậy để C min \(\Leftrightarrow\)\(x\)max

p/s : riêng câu c mình không tìm được C min :( Mong bạn nào giỏi tìm hộ mình

Bài 2 : 

a) Ta thấy : \(x^2\ge0\)

                  \(\left|y+1\right|\ge0\)

\(\Leftrightarrow3x^2+5\left|y+1\right|-5\ge-5\)

\(\Leftrightarrow C=-3x^2-5\left|y+1\right|+5\le-5\)

Dấu " = " xảy ra :

\(\Leftrightarrow\hept{\begin{cases}x=0\\y+1=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)

Vậy \(Max_A=-5\Leftrightarrow\left(x;y\right)=\left(0;-1\right)\)

b) Để B max

\(\Leftrightarrow\left(x+3\right)^2+2\)min

Ta thấy : \(\left(x+3\right)^2\ge0\)

\(\Leftrightarrow\left(x+3\right)^2+2\ge2\)

Dấu " = " xảy ra :

\(\Leftrightarrow x+3=0\)

\(\Leftrightarrow x=-3\)

Vậy \(Max_B=\frac{1}{2}\Leftrightarrow x=-3\)

c) Ta thấy : \(\left(x+1\right)^2\ge0\)

\(\Leftrightarrow x^2+2x+1\ge0\)

\(\Leftrightarrow-x^2-2x-1\le0\)

\(\Leftrightarrow C=-x^2-2x+7\le8\)

Dấu " = " xảy ra :

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy \(Max_C=8\Leftrightarrow x=-1\)

5 tháng 4 2017

a. (x+2)2 >= 0

(y-1/5)2 >= 0

=> MinC = -10 khi x = -2, y = 1/5

b. (2x-3)2 + 5 >= 5

D đạt max khi mẫu đạt min (Mẫu > 0)

=> MaxD = 4/5 khi x = 3/2

9 tháng 4 2020

\(A=\left(x-2\right)^2+2\)

Có: \(\left(x-2\right)^2\ge0với\forall x\\ \Rightarrow\left(x-2\right)^2+2\ge0\\ \Leftrightarrow A\ge0\)

Dấu "=" xảy ra khi \(\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy....

\(B=\left(2x+1\right)^4-1\)

Có: \(\left(2x+1\right)^4\ge0với\forall x\\ \Rightarrow\left(2x+1\right)^4-1\ge-1\\ \Leftrightarrow B\ge-1\)

Dấu "=" xảy ra khi \(\left(2x+1\right)^4=0\Leftrightarrow x=-\frac{1}{2}\)

VẬy...

\(C=\left(x^2-16\right)^2+\left|y-3\right|-2\)

Có: \(\left(x^2-16\right)^2\ge0với\forall x\\ \left|y-3\right|\ge0với\forall x\\ \Rightarrow\left(x^2-16\right)^2+\left|y-3\right|-2\ge2\\ \Leftrightarrow C\ge2\)

Dấu "=" xảy ra khi \(\left(x^2-16\right)^2=0\Leftrightarrow x\in\left\{\pm16\right\}\); \(\left|y-3\right|=0\Leftrightarrow y=3\)

Vậy...

\(D=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\)

Có: \(\left(x+2\right)^2\ge0với\forall x\\ \left(y-\frac{1}{5}\right)^2\ge0với\forall x\\ \Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge-10\\ \Leftrightarrow D\ge-10\)

Dấu "=" xảy ra khi \(\left(x+2\right)^2=0\Leftrightarrow x=-2\);\(\left(y-\frac{1}{5}\right)^2=0\Leftrightarrow x=\frac{1}{5}\)

Vậy...

12 tháng 3 2019

2.a.\(A=6x^2y-\frac{2}{3}x^2y-\frac{4}{3}x^2y=4x^2y\)

b. Thay x=-2; y=\(\frac{1}{8}\):

\(A=4\left(-2\right)^2.\frac{1}{8}=2\)

13 tháng 2 2017

Bài 4:

Ta có: \(B=\frac{x^2+y^2+7}{x^2+y^2+2}=1+\frac{5}{x^2+y^2+2}\)

\(x^2+y^2+2>0\) nên để \(\frac{5}{x^2+y^2+2}\) lớn nhất thì \(x^2+y^2+2\) nhỏ nhất.

Lại có:

\(\left\{\begin{matrix}x^2\ge0\\y^2\ge0\end{matrix}\right.\Rightarrow x^2+y^2\ge0\Rightarrow x^2+y^2+2\ge2\)

\(\Rightarrow\frac{5}{x^2+y^2+2}\le\frac{5}{2}\)

\(\Rightarrow1+\frac{5}{x^2+y^2+2}\le1+2,5\)

\(\Rightarrow B=\frac{x^2+y^2+7}{x^2+y^2+2}\le3,5\)

Vậy \(MAX_B=3,5\) khi \(x=y=0\)

13 tháng 2 2017

5)Ta có 26y chẵn, 2000 chẵn \(\Rightarrow51x\)chẵn \(\Rightarrow x⋮2\)

Mà x nguyên tố \(\Rightarrow x=2\)

Thay x=2 vào ta có

51.2+26y=2000

\(\Rightarrow102+26y=2000\)

\(\Rightarrow26y=1898\)

\(\Rightarrow y=73\)

Vậy \(x=2,y=73\)