K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2018

Câu 1 :

\(B=\left|3x-5\right|+\left|2-3x\right|\ge\left|3x-5+2-3x\right|=\left|-3\right|=3\)

Dấu "=" xảy ra  

TH1: \(\Leftrightarrow\hept{\begin{cases}3x-5>0\\2-3x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>\frac{5}{3}\\x< \frac{2}{3}\end{cases}\Rightarrow}\frac{5}{3}< x< \frac{2}{3}\left(\text{loại}\right)}\)

TH2: \(\Leftrightarrow\hept{\begin{cases}3x-5< 0\\2-3x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< \frac{5}{3}\\x>\frac{2}{3}\end{cases}\Rightarrow}\frac{2}{3}< x< \frac{5}{3}\left(\text{thỏa mãn}\right)}\)

Vậy Bmin = 3 <=> 2/3 < x < 5/3 

Câu 2 :

\(C=\left|2x-20\right|-\left|2x+3\right|\le\left|2x-20-2x-3\right|=\left|-23\right|=23\)

Dấu "=" xảy ra 

TH1 : \(\Leftrightarrow\hept{\begin{cases}2x-20>0\\2x+3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>10\\x>\frac{-3}{2}\end{cases}}\Rightarrow x>10\)

TH2: \(\Leftrightarrow\hept{\begin{cases}2x-20< 0\\2x+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 10\\x< \frac{-3}{2}\end{cases}\Rightarrow}}x< \frac{-3}{2}\)

Vậy Cmax = 23 <=> 2 t/h ( ko chắc )

13 tháng 10 2018

\(B=\left|3x-5\right|+\left|2-3x\right|\ge\left|3x-5+2-3x\right|=\left|-5+2\right|=3\)

Dấu "=" xảy ra \(\Leftrightarrow\left(3x-5\right)\left(2-3x\right)\ge0\)

                         \(\Leftrightarrow\hept{\begin{cases}3x-5\ge0\\2-3x\le0\end{cases}}\) hoặc   \(\hept{\begin{cases}3x-5\le0\\2-3x\ge0\end{cases}}\)

 Giải ra ta được: \(\Leftrightarrow\frac{2}{3}\le x\le\frac{5}{3}\)

Vậy Bmin = 3 khi và chỉ khi \(\frac{2}{3}\le x\le\frac{5}{3}\)

\(C=\left|2x-20\right|-\left|2x+3\right|\le\left|2x-20-2x-3\right|=\left|-20-3\right|=23\)

Dấu "=" xảy ra <=> \(\orbr{\begin{cases}2x-20\ge2x+3\ge0\\2x-20\le2x+3\le0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\ge10;x\ge\frac{-3}{2}\\x\le10;x\le\frac{-3}{2}\end{cases}}\)

Vậy Cmax = 17 khi và chỉ khi ....

13 tháng 10 2018

tao chịu

25 tháng 6 2024

mk cx chịu lun

29 tháng 6 2018

A = 5+ |2x-3,4|

vì GTTĐ của một biểu thức >= 0 nên A >= 5 ( khi x = 1,7)

B >= 27,8 (khi x = 2)

C >= 16,5 ( khi x = 1/4)
D >= 0 (khi x = 2/3)

lưu ý GTTĐ viết là | | nhé !

15 tháng 10 2022

\(B>=\left|3x-5+2-3x\right|=3\)

Dấu = xảy ra khi (3x-5)(3x-2)<=0

=>2/3<=x<=5/3

\(C=\left|2x-20\right|-\left|2x+3\right|\le\left|2x-20-2x-3\right|=23\)

Dấu = xảy ra khi (2x-20)(2x+3)<=0

=>-3/2<=x<=10

13 tháng 10 2018

Bài 1 mình đã làm ở olm rồi: https://olm.vn/hoi-dap/question/1325771.html

14 tháng 10 2018

Bài 1 :

B=|3x-5|+|2-3x|

\(\Rightarrow B=\left|5-3x\right|+\left|3x-2\right|\\ \Rightarrow B\ge\left|5-3x+3x-2\right|=3\\ \Rightarrow B\ge3\)

Dấu "=" xảy ra

\(\Leftrightarrow\left(5-3x\right).\left(3x-2\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}5-3x\ge0\\3x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}5-3x\le0\\3x-2< 0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x\le5\\3x>2\end{matrix}\right.\\\left\{{}\begin{matrix}3x\ge5\\3x< 2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le\dfrac{5}{3}\\x>\dfrac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{5}{3}\\x< \dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x\ge\dfrac{5}{3}\\x< \dfrac{2}{3}\end{matrix}\right.\) ( vô lí)

\(\Rightarrow\dfrac{2}{3}< x\le\dfrac{5}{3}\)

Vậy \(B_{min}=3\Leftrightarrow\dfrac{2}{3}< x\le\dfrac{5}{3}\)