Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
ta có:
\(\left\{{}\begin{matrix}\dfrac{b-a}{b-a}=1..\forall a\ne b\\\dfrac{b-a}{a.b}=\dfrac{1}{a}-\dfrac{1}{b}..\forall a,b\ne0\end{matrix}\right.\)(*)
\(A=\dfrac{1}{2.5}+\dfrac{1}{5.8}+..+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(\left\{{}\begin{matrix}a=3n-1\\b=3n+2\end{matrix}\right.\)\(\Rightarrow b-a=3..\forall n\)
Thay (*) vào dãy A
\(A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-....+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)
\(A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)=\dfrac{1}{3}\left(\dfrac{3n+2-2}{2.\left(3n+2\right)}\right)=\dfrac{n}{6n+4}=VP\rightarrow dpcm\)
B) tương tự
ừ Vy Nguyễn, mik làm nè:
e, \(\dfrac{-2}{3}-\dfrac{1}{3}\left(2x-5\right)=\dfrac{3}{2}.\)
\(\dfrac{1}{3}\left(2x-5\right)=\dfrac{-2}{3}-\dfrac{3}{2}.\)
\(\dfrac{1}{3}\left(2x-5\right)=\dfrac{-4}{6}+\dfrac{-9}{6}.\)
\(\dfrac{1}{3}\left(2x-5\right)=\dfrac{-13}{6}.\)
\(2x-5=\dfrac{-13}{6}:\dfrac{1}{3}.\)
\(2x-5=\dfrac{-13}{6}.3.\)
\(2x-5=\dfrac{-13}{2}.\)
\(2x=\dfrac{-13}{2}+5.\)
\(2x=\dfrac{-13}{2}+\dfrac{10}{2}.\)
\(2x=\dfrac{-3}{2}.\)
\(x=\dfrac{-3}{2}:2.\)
\(x=\dfrac{-3}{2.2}=\dfrac{-3}{4}.\)
g, \(\dfrac{2}{5}x+\dfrac{1}{2}=\dfrac{-3}{4}.\)
\(\dfrac{2}{5}x=\dfrac{-3}{4}-\dfrac{1}{2}.\)
\(\dfrac{2}{5}x=\dfrac{-3}{4}+\dfrac{-2}{4}.\)
\(\dfrac{2}{5}x=\dfrac{-5}{4}.\)
\(x=\dfrac{-5}{4}:\dfrac{2}{5}.\)
\(x=\dfrac{-5}{4}.\dfrac{5}{2}.\)
\(x=\dfrac{-25}{8}.\)
h, \(\left(2x-2\dfrac{4}{5}\right):3\dfrac{1}{8}=1\dfrac{3}{5}.\)
\(\left(2x-2\dfrac{4}{5}\right)=\dfrac{8}{5}.\dfrac{25}{8}.\)
\(\left(2x-2\dfrac{4}{5}\right)=5.\)
\(2x=5+2\dfrac{4}{5}.\)
\(2x=7\dfrac{4}{5}.\)
\(x=7\dfrac{4}{5}:2.\)
\(x=\dfrac{39}{10}.\)
(còn tiếp ở phần sau!!!)
Tiếp:
i, \(3,2x-\left(\dfrac{4}{5}+\dfrac{2}{3}\right):3\dfrac{2}{3}=\dfrac{7}{20}.\)
\(\dfrac{16}{5}x-\left(\dfrac{4}{5}+\dfrac{2}{3}\right)=\dfrac{7}{20}.\dfrac{11}{3}.\)
\(\dfrac{16}{5}x-\left(\dfrac{4}{5}+\dfrac{2}{3}\right)=\dfrac{77}{60}.\)
\(\dfrac{16}{5}x-\left(\dfrac{12}{15}+\dfrac{10}{15}\right)=\dfrac{77}{60}.\)
\(\dfrac{16}{5}x-\dfrac{22}{15}=\dfrac{77}{60}.\)
\(\dfrac{16}{5}x=\dfrac{77}{60}+\dfrac{22}{15}.\)
\(\dfrac{16}{5}x=\dfrac{77}{60}+\dfrac{88}{60}.\)
\(\dfrac{16}{5}x=\dfrac{165}{60}=\dfrac{11}{4}.\)
\(x=\dfrac{11}{4}:\dfrac{16}{5}.\)
\(x=\dfrac{11}{4}.\dfrac{5}{16}=\dfrac{55}{64}.\)
k, \(\left(\dfrac{3x}{7}+1\right):\left(-4\right)=\dfrac{-1}{28}.\)
\(\left(\dfrac{3x}{7}+1\right)=\dfrac{-1}{28}.\left(-4\right).\)
\(\left(\dfrac{3x}{7}+1\right)=\dfrac{1}{7}.\)
\(\dfrac{3x}{7}=\dfrac{1}{7}-1.\)
\(\dfrac{3x}{7}=\dfrac{1}{7}-\dfrac{7}{7}.\)
\(\dfrac{3x}{7}=\dfrac{-6}{7}.\)
\(\Rightarrow3x=-6.\)
\(\Rightarrow x=-6:3=-2.\)
~ Chúc bn học tốt!!! ~
Bài mik đúng thì nhớ tik mik nha!!!
Trời ơi cái đề bài !!!
Thoy thì làm từng câu vậy
a) \(I=10101.\left(\dfrac{5}{111111}+\dfrac{5}{222222}-\dfrac{4}{111111}\right)\)
\(I=10101.\left(\dfrac{10}{222222}+\dfrac{5}{222222}-\dfrac{8}{222222}\right)\)
\(I=10101.\left(\dfrac{15}{222222}-\dfrac{8}{222222}\right)\)
\(I=10101.\dfrac{7}{222222}\)
\(I=\dfrac{7}{22}\)
a) \(\dfrac{4}{7}=\dfrac{4\cdot9}{7\cdot9}=\dfrac{36}{63}\)
\(\dfrac{13}{9}=\dfrac{13\cdot7}{9\cdot7}=\dfrac{91}{63}\)
\(\dfrac{8}{21}=\dfrac{8\cdot3}{21\cdot3}=\dfrac{24}{63}\)
b) \(\dfrac{1}{-36}=\dfrac{1\cdot5}{-36\cdot5}=\dfrac{-5}{180}\)
\(\dfrac{-8}{45}=\dfrac{-8\cdot4}{45\cdot4}=\dfrac{-32}{180}\)
\(\dfrac{13}{90}=\dfrac{13\cdot2}{90\cdot2}=\dfrac{26}{180}\)
c) \(3=\dfrac{3}{1}=\dfrac{3\cdot23}{1\cdot23}=\dfrac{69}{23}\)
\(-1=\dfrac{-1}{1}=\dfrac{-1\cdot23}{1\cdot23}=\dfrac{-23}{23}\)
\(\dfrac{17}{23}\) giữ nguyên
\(4\dfrac{1}{3}.\dfrac{4}{9}+13\dfrac{2}{3}.\dfrac{4}{9}\)\(=\dfrac{4}{9}\left(4\dfrac{1}{3}+13\dfrac{2}{3}\right)=\dfrac{4}{9}.18=8\)
\(5\dfrac{1}{4}.\dfrac{3}{8}+10\dfrac{3}{4}.\dfrac{3}{8}=\dfrac{3}{8}\left(5\dfrac{1}{4}+10\dfrac{3}{4}\right)=\dfrac{3}{8}.16=6\)
Bài 1:
Ta có: \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{4}\right)^2\ge0\\\left|y+\dfrac{1}{4}\right|\ge0\end{matrix}\right.\Rightarrow\left(x-\dfrac{1}{4}\right)^2+\left|y+\dfrac{1}{4}\right|\ge0\)
\(\Rightarrow A=\left(x-\dfrac{1}{4}\right)^2+\left|y+\dfrac{1}{4}\right|+\dfrac{13}{14}\ge\dfrac{13}{14}\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{4}\right)^2=0\\\left|y+\dfrac{1}{4}\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{4}=0\\y+\dfrac{1}{4}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=\dfrac{-1}{4}\end{matrix}\right.\)
Vậy \(MIN_A=\dfrac{13}{14}\) khi \(x=\dfrac{1}{4};y=-\dfrac{1}{4}\)
Nguyễn Huy TúAce LegonaNghiêm Gia Phương
Hoàng Thị Ngọc AnhHoang Hung QuanngonhuminhĐức Huy ABC
An NguyễnNguyễn Nhật MinhPhạm Nguyễn Tất Đạt
Đức Minh