Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)+2xy}\)
\(=\frac{x^2+5x+y^2+5y+2xy-6}{x^2+6x+y^2+6y+2xy}\)
\(=\frac{\left(x+y\right)^2+5\left(x+y\right)-6}{\left(x+y\right)^2+6\left(x+y\right)}\)
\(=\frac{\left(x+y\right)\left(x+y+5\right)-6}{\left(x+y\right)\left(x+y+6\right)}\)
\(=\frac{2005\times\left(2005+5\right)-6}{2005\times\left(2005+6\right)}\)
\(=\frac{2005\times2010-6}{2005\times2011}\)
\(=\frac{2004}{2005}\)
Bài 1 :
a, \(4\left(-3\text{x}\right)yx^5=-12x^6y\)
Hệ số : -12 , Biến : \(x^6y\)
b, \(7\text{x}y^5\left(-5\text{x}^3y^2\right)=-35\text{x}^4y^7\)
Hệ số : -35 , Biến : \(x^4y^7\)
c, \(-\left[-23\text{a}b\text{x}^3\left(-y\right)\right]=-23ab\text{x}^3y\)
Hệ số : -23 , Biến : \(ab\text{x}^3y\)
d, \(\left(-3\text{a}y^3\right)\left(-5b^2xy\right)=3\text{a}y^3\cdot5b^2xy=15\text{a}b^2xy^4\)
Hệ số : 15 , Biến : \(ab^2xy^4\)
Bài 2 :
a, \(x^4y^5z\)có Bậc là 10
b, \(-\left(-7\text{x}^7y\right)=7\text{x}^7y\)có bậc là 8
c,
b, \(-41\left(x^3y^2\right)^2=-41\text{x}^6y^4\)có bậc là 10
d, \(-2\frac{1}{3}x^3\left(xy^2\right)^3=-\frac{7}{3}x^3.x^3.y^6=-\frac{7}{3}x^6y^6\)có bậc là 12
1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
b/
\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)
\(=16+8+20=44\)
\(\Rightarrow B\ge11\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Câu 3 kiểm tra lại đề lại với , nếu đúng thì phức tạp lắm, còn sửa lại đề thì là :
\(y^2+2y+4^x-2^{x+1}+2=0\)
\(=>\left(y^2+2y+1\right)+2^{2x}-2^x.2+1=0\)
\(=>\left(y+1\right)^2+\left(\left(2^x\right)^2-2^x.2.1+1^2\right)=0\)
\(=>\left(y+1\right)^2+\left(2^x-1\right)^2=0\)
Dấu = xảy ra khi :
\(\hept{\begin{cases}y+1=0\\2^x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=-1\\x=0\end{cases}}}\)
CHÚC BẠN HỌC TỐT...........
\(A=x^2+3x+7\)
\(=x^2+2.1,5x+2,25+4,75\)
\(=\left(x+1,5\right)^2+4,75\ge4,75\)
Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)
\(B=2x^2-8x\)
\(=2\left(x^2-4x\right)\)
\(=2\left(x^2-4x+4-4\right)\)
\(=2\left[\left(x-2\right)^2-4\right]\)
\(=2\left(x-2\right)^2-8\ge-8\)
Vậy \(B_{min}=-8\Leftrightarrow x=2\)
bạn vào loigiaihay rồi chọn toán lớp 8 rồi chọn đẳng thức đáng nhớ
dễ mà áp dụng hết hằng đẳng thức nếu bạn thuộc hằng đẳng thức mik chỉ làm mỗi bài 1 ý nha xong dựa vô mà làm
\(1a.\left(2x+3y\right)^2=\left(2x\right)^2+2.2x.3y+\left(3y\right)^2\)
\(=4y^2+12xy+9y^2\)
\(2a.x^2-6x+9\)
\(=x^2-2.x.3+3^2\)
\(=\left(x-3\right)^2\)
1.
\(D=\frac{2\left|x\right|+3}{3\left|x\right|-1}\)
\(\hept{\begin{cases}\left|x\right|\ge0\Rightarrow2\left|x\right|+3\ge3\\\left|x\right|\ge0\Rightarrow3\left|x\right|\ge0\Rightarrow3\left|x\right|-1\ge-1\end{cases}}\)
MaxD = Min3|x| -1
\(3\left|x\right|-1\in Z^+\)
\(\Rightarrow3x-1=1\)
\(\Rightarrow3x=2\Rightarrow x=\frac{2}{3}\)
\(\Rightarrow Max_D=\frac{2\left|\frac{2}{3}\right|+3}{3.\left|\frac{2}{3}\right|-1}=\frac{13}{\frac{3}{1}}=\frac{13}{3}\)
2:
Theo đề bài là:
\(\frac{x}{y}=\frac{7}{3};x-y=16\)
\(\frac{\Rightarrow x}{3}=\frac{y}{7};x-y=16\)
Áp dụng tính chất dãy tỉ số = ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)
\(\frac{x}{3}=-4\)
\(\Rightarrow\hept{\begin{cases}x=-4.3\\x=-12\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y=-4.7\\y=-28\end{cases}}\)
Vậy x = -12
y = -28