\(D=\frac{2\left|x\right|+3}{3\left|x\right|-1}\)

 bài...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2020

1. 

\(D=\frac{2\left|x\right|+3}{3\left|x\right|-1}\)

\(\hept{\begin{cases}\left|x\right|\ge0\Rightarrow2\left|x\right|+3\ge3\\\left|x\right|\ge0\Rightarrow3\left|x\right|\ge0\Rightarrow3\left|x\right|-1\ge-1\end{cases}}\)

MaxD = Min3|x| -1

\(3\left|x\right|-1\in Z^+\)

\(\Rightarrow3x-1=1\)

\(\Rightarrow3x=2\Rightarrow x=\frac{2}{3}\)

\(\Rightarrow Max_D=\frac{2\left|\frac{2}{3}\right|+3}{3.\left|\frac{2}{3}\right|-1}=\frac{13}{\frac{3}{1}}=\frac{13}{3}\)

2:

Theo đề bài là:

\(\frac{x}{y}=\frac{7}{3};x-y=16\)

\(\frac{\Rightarrow x}{3}=\frac{y}{7};x-y=16\)

Áp dụng tính chất dãy tỉ số = ta có:

\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)

\(\frac{x}{3}=-4\)

\(\Rightarrow\hept{\begin{cases}x=-4.3\\x=-12\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}y=-4.7\\y=-28\end{cases}}\)

Vậy x = -12

y = -28

29 tháng 11 2016

\(P=\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)+2xy}\)

\(=\frac{x^2+5x+y^2+5y+2xy-6}{x^2+6x+y^2+6y+2xy}\)

\(=\frac{\left(x+y\right)^2+5\left(x+y\right)-6}{\left(x+y\right)^2+6\left(x+y\right)}\)

\(=\frac{\left(x+y\right)\left(x+y+5\right)-6}{\left(x+y\right)\left(x+y+6\right)}\)

\(=\frac{2005\times\left(2005+5\right)-6}{2005\times\left(2005+6\right)}\)

\(=\frac{2005\times2010-6}{2005\times2011}\)

\(=\frac{2004}{2005}\)

25 tháng 6 2019

Bài 1 : 

a, \(4\left(-3\text{x}\right)yx^5=-12x^6y\)

Hệ số : -12 , Biến : \(x^6y\)

b, \(7\text{x}y^5\left(-5\text{x}^3y^2\right)=-35\text{x}^4y^7\)

Hệ số : -35 , Biến : \(x^4y^7\)

c, \(-\left[-23\text{a}b\text{x}^3\left(-y\right)\right]=-23ab\text{x}^3y\)

Hệ số : -23 , Biến : \(ab\text{x}^3y\)

d, \(\left(-3\text{a}y^3\right)\left(-5b^2xy\right)=3\text{a}y^3\cdot5b^2xy=15\text{a}b^2xy^4\)

Hệ số : 15   , Biến : \(ab^2xy^4\)

25 tháng 6 2019

Bài 2 : 

a, \(x^4y^5z\)có Bậc là 10 

b, \(-\left(-7\text{x}^7y\right)=7\text{x}^7y\)có bậc là 8 

c, 

b, \(-41\left(x^3y^2\right)^2=-41\text{x}^6y^4\)có bậc là 10 

d, \(-2\frac{1}{3}x^3\left(xy^2\right)^3=-\frac{7}{3}x^3.x^3.y^6=-\frac{7}{3}x^6y^6\)có bậc là 12 

9 tháng 9 2019

1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

9 tháng 9 2019

b/

\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)

\(=16+8+20=44\)

\(\Rightarrow B\ge11\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

18 tháng 7 2017

Câu 3 kiểm tra lại đề lại với , nếu đúng thì phức tạp lắm, còn sửa lại đề thì là :

\(y^2+2y+4^x-2^{x+1}+2=0\)

\(=>\left(y^2+2y+1\right)+2^{2x}-2^x.2+1=0\)

\(=>\left(y+1\right)^2+\left(\left(2^x\right)^2-2^x.2.1+1^2\right)=0\)

\(=>\left(y+1\right)^2+\left(2^x-1\right)^2=0\)

Dấu = xảy ra khi :

\(\hept{\begin{cases}y+1=0\\2^x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=-1\\x=0\end{cases}}}\)

CHÚC BẠN HỌC TỐT........... 

18 tháng 7 2017

mk chịu

26 tháng 10 2017

bạn nào đúng mk k nha okay!!!

10 tháng 12 2017

minh giong vu the qang huy

22 tháng 7 2019

\(A=x^2+3x+7\)

\(=x^2+2.1,5x+2,25+4,75\)

\(=\left(x+1,5\right)^2+4,75\ge4,75\)

Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)

22 tháng 7 2019

\(B=2x^2-8x\)

\(=2\left(x^2-4x\right)\)

\(=2\left(x^2-4x+4-4\right)\)

\(=2\left[\left(x-2\right)^2-4\right]\)

\(=2\left(x-2\right)^2-8\ge-8\)

Vậy \(B_{min}=-8\Leftrightarrow x=2\)

10 tháng 9 2018

bạn vào loigiaihay rồi chọn toán lớp 8 rồi chọn đẳng thức đáng nhớ

10 tháng 9 2018

dễ mà áp dụng hết hằng đẳng thức nếu bạn thuộc hằng đẳng thức mik chỉ làm mỗi bài 1 ý nha xong dựa vô mà làm

\(1a.\left(2x+3y\right)^2=\left(2x\right)^2+2.2x.3y+\left(3y\right)^2\)

                                   \(=4y^2+12xy+9y^2\)

\(2a.x^2-6x+9\)

\(=x^2-2.x.3+3^2\)

\(=\left(x-3\right)^2\)