\(A=11-10x-x^2\)

b.

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B1:

a)

\(A=11-10x-x^2\\ A=-x^2-10x-25+36\\ A=-\left(x-5\right)^2+36\le36\)

đẳng thức xảy ra khi x-5=0 => x=5

vậy GTLN của A là 36 tại x=5

b)

\(B=4-x^2+2x\\ B=-x^2+2x-1+5\\ B=-\left(x-1\right)^2+5\le5\)

đẳng thức xảy ra khi x-1=0 => x=1

c)

\(C=4x-x^2\\ C=-x^2+4x-4+4\\ C=-\left(x-2\right)^2+4\le4\)

đẳng thức xảy ra khi x-2=0 => x=2

29 tháng 8 2017

Sửa đề: CMR : \(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(3a-5b\right)^2\)

Bài 2:Ta có:

\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(3a-5b\right)^2\)

\(\Leftrightarrow\left(5a-3b\right)^2-64c^2=\left(3a-5b\right)^2\)

\(\Leftrightarrow\left(5a-3b\right)^2-\left(3a-5b\right)^2=64c^2\)

\(\Leftrightarrow\left(5a-3b-3a+5b\right)\left(5a-3b+3a-5b\right)=64c^2\)

\(\Leftrightarrow\left(2a+2b\right)\left(8a-8b\right)=64c^2\)

\(\Leftrightarrow16\left(a+b\right)\left(a-b\right)=64c^2\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)=4c^2\)

\(\Leftrightarrow a^2-b^2=4c^2\) ( Đúng )

\(\Rightarrow\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(3a-5b\right)^2\)

23 tháng 9 2018

Ta có: \(a^2-b^2=4c^2\)

\(\Rightarrow a^2-b^2-4c^2=0\)

Xét hiệu:

 \(\left(5a-3b+8c\right)\left(5a-3b-8c\right)-\left(3a-5b\right)^2\)

\(=\left(5a-3b\right)^2-\left(8c\right)^2-\left(3a-5b\right)^2\)

\(=25a^2-30ab+9b^2-64c^2-9a^2+30ab-25b^2\)

\(=16a^2-16b^2-64c^2\)

\(=16\left(a^2-b^2-4c^2\right)\)

\(=16.0\)

\(=0\)

\(\Rightarrow\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(3a-5b\right)^2\)

                                                                             đpcm 

Tham khảo nhé~

11 tháng 10 2020

Một cách khác :))

Xét VT của biểu thức cần cm ta có :

( 5a - 3b + 8c )( 5a - 3b - 8c )

= [ ( 5a - 3b ) + 8c ][ ( 5a - 3b ) - 8c ]

= ( 5a - 3b )2 - ( 8c )2

= 25a2 - 30ab + 9b2 - 64c2

= 25a2 - 30ab + 9b2 - 16.4c2

= 25a2 - 30ab + 9b2 - 16( a2 - b2 ) < theo đề a2 - b2 = 4c2 >

= 252 - 30ab + 9b2 - 16a2 + 16b2

= 9a2 - 30ab + 25b2

= ( 3a - 5b )2 = VP

=> đpcm

11 tháng 9 2018

ta có : \(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(3a-5b\right)^2\)

\(\Leftrightarrow\left(5a-3b\right)^2-\left(8c\right)^2=\left(3a-5b^2\right)\)

\(\Leftrightarrow\left(5a-3b\right)^2-\left(3a-5b\right)^2=\left(8c\right)^2\)

\(\Leftrightarrow\left(5a-3b-3a+5b\right)\left(5a-3b+3a-5b\right)=\left(8c\right)^2\)

\(\Leftrightarrow\left(2a+2b\right)\left(8a-8b\right)=64c^2\)

\(\Leftrightarrow16\left(a^2-b^2\right)=64c^2\Leftrightarrow a^2-b^2=4c^2\) đúng như giả thiết

\(\Rightarrow\left(đpcm\right)\)

3 tháng 10 2016

xét hiệu\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)-\left(3a-5b\right)^2=0\)

\(\left(5a-3b\right)^2-64c^2-\left(3a-5b\right)^2=0\)

\(\left(5a-3b\right)^2-\left(3a-5b\right)^2-64c^2=0\)

\(\left(5a-3b-3a+5b\right)\left(5a-3b+3a-5b\right)-64c^2=0\)

\(\left(2a+2b\right)\left(8a-8b\right)-64c^2=0\)

\(16a^2-16ab+16ab-16b^2-64c^2=0\)

\(16a^2-16b^2-64c^2=0\)

\(16\left(a^2-b^2\right)-64c^2=0\)

\(16\times4c^2-64c^2=0\)

\(64c^2-64c^2=0\left(dpcm\right)\)

3 tháng 10 2016

\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)\)

\(=\left(5a-3b\right)^2-\left(8c\right)^2\)

\(=25a^2-30ab+9b^2-16\left(a^2-b^2\right)\)

\(=9a^2-30ab+25b^2\)

\(=\left(3a-5b\right)^2\)

22 tháng 7 2019

\(A=x^2+3x+7\)

\(=x^2+2.1,5x+2,25+4,75\)

\(=\left(x+1,5\right)^2+4,75\ge4,75\)

Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)

22 tháng 7 2019

\(B=2x^2-8x\)

\(=2\left(x^2-4x\right)\)

\(=2\left(x^2-4x+4-4\right)\)

\(=2\left[\left(x-2\right)^2-4\right]\)

\(=2\left(x-2\right)^2-8\ge-8\)

Vậy \(B_{min}=-8\Leftrightarrow x=2\)

30 tháng 11 2016

các bạn làm giùm mih đi câu nào cũng được

28 tháng 10 2017

Bài 1.

a) 2x - x2

= x(2 - x)

b) 16x2 - y2

= (4x + y)(4x - y)

c) xy + y2 - x - y

= (xy + y2) - (x + y)

= y(x + y) - (x + y)

= (y - 1)(x + y)

d) x2 - x - 12

= x2 + 3x - 4x - 12

= (x2 + 3x) - (4x + 12)

= x(x + 3) - 4(x + 3)

= (x - 4)(x + 3)

Bài 2.

(2x + 3y)(2x - 3y) - (2x - 1)2 + (3y - 1)2

= (2x + 3y)(2x - 3y) + [(3y - 1)2 - (2x - 1)2]

= (2x + 3y)(2x - 3y) + (3y - 1 + 2x - 1)(3y - 1 - 2x + 1)

= (2x + 3y)(2x - 3y) + (3y + 2x - 2)(3y - 2x)

= (2x + 3y)(2x - 3y) - (2x + 3y - 2)(2x - 3y)

= (2x - 3y)(2x + 3y - 2x - 3y + 2)

= 2.(2x + 3y)

Thay x = 1; y = -1 và biểu thức đại số, ta có:

2[2.1 + 3.(-1)]

= 2(2 - 3)

= 2.(-1) = -2

Bài 3

a) 9x2 - 3x = 0

3x(3x - 1) = 0

\(\Leftrightarrow\left\{{}\begin{matrix}3x=0\\3x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\3x=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{1}{3}\end{matrix}\right.\)

b) x2 - 25 - (x + 5) = 0

(x2 - 25) - (x + 5) = 0

(x - 5)(x + 5) - (x + 5) = 0

(x - 5 - 1)(x + 5) = 0

(x - 6)(x + 5) = 0

\(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\x+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=6\\x=-5\end{matrix}\right.\)

c) x2 + 4x + 3 = 0

x2 + x + 3x + 3 = 0

(x2 + x) + (3x + 3) = 0

x(x + 1) + 3(x + 1) = 0

(x + 3)(x + 1) = 0

\(\Leftrightarrow\left\{{}\begin{matrix}x+3=0\\x+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)

d) (3x - 1)(2x - 7) - (x + 1)(6x - 5) = 16

6x2 - 21x - 2x + 7 - 6x2 + 5x - 6x + 5 - 16 = 0

-24x - 4 = 0

\(\Rightarrow\)-24x = 4

\(\Rightarrow\) x = \(\dfrac{-1}{6}\)

28 tháng 10 2017

Bài 1:Phân tích đa thức thành nhân tử

a,2xx2

=x(2-x)

b,

16x2y2

=(4x-y)(4x+y)

c,xy+y2xy

=(xy+y2)-(x+y)

=y(x+y)-(x+y)

=(x+y)(y-1)

d,

x2x12

=x2-4x+3x-12

=(x2-4x)+(3x-12)

=x(x-4)+3(x-4)

=(x-4)(x+3)

\(a.\: 2a^2b\left(x+y\right)-4a^3b\left(-x-y\right)\\ =\left(x+y\right)\left(2a^2b+4a^3b\right)\\ =2a^2b\left(x+y\right)\left(1+2a\right)\)

\(b.\:-3a\left(x-y\right)-a^2\left(7-x\right)\\ =a\left(3y-3x-7a+ax\right)\)

6 tháng 8 2017

๖ۣۜĐặng♥๖ۣۜQuý bạn giúp mình thêm mấy câu kia đi