Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
1. \(\sqrt{-3x+6}\) có nghĩa khi \(-3x+6\ge0\Leftrightarrow-3x\ge-6\Rightarrow x\le2\)
2.
\( a){\left( {\sqrt 7 - \sqrt 5 } \right)^2} + 2\sqrt {35} = 7 - 2\sqrt {35} + 5 + 2\sqrt {35} = 12\\ b)3\sqrt 8 - \sqrt {50} - \sqrt {{{\left( {\sqrt 2 - 1} \right)}^2}} = 6\sqrt 2 - 5\sqrt 2 - \sqrt 2 + 1 = 1 \)
Bài 2.
\( M = \dfrac{{\sqrt a + 3}}{{\sqrt a - 2}} - \dfrac{{\sqrt a - 1}}{{\sqrt a + 2}} + \dfrac{{4\sqrt a - 4}}{{4 - a}}\\ M = \dfrac{{\left( {\sqrt a + 2} \right)\left( {\sqrt a + 3} \right) - \left( {\sqrt a - 2} \right)\left( {\sqrt a - 1} \right) - \left( {4\sqrt a - 4} \right)}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a + 2} \right)}}\\ M = \dfrac{{4\sqrt a + 8}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a + 2} \right)}}\\ M = \dfrac{{4\left( {\sqrt a + 2} \right)}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a + 2} \right)}}\\ M = \dfrac{4}{{\sqrt a - 2}} \)
Bài 3.
1.
\( a)\sqrt {{{313}^2} - {{312}^2}} + \sqrt {{{17}^2} - {8^2}} = \sqrt {\left( {313 - 312} \right)\left( {313 + 312} \right)} + \sqrt {\left( {17 - 8} \right)\left( {17 + 8} \right)} \\ = \sqrt {625} + \sqrt {9.25} = 25 + 3.5 = 25 + 15 = 40\\ b)\dfrac{{2 + \sqrt 2 }}{{1 + \sqrt 2 }} = \dfrac{{\sqrt 2 \left( {\sqrt 2 + 1} \right)}}{{1 + \sqrt 2 }} = \sqrt 2 \)
2. \(\left\{{}\begin{matrix}2x+y=3\\3x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+2y=6\\3x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x=7\\2x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm duy nhất \(\left(1;1\right)\)
3.
\(
\sqrt {9\left( {x - 1} \right)} = 21\\
\Leftrightarrow 3\sqrt {x - 1} = 21\\
\Leftrightarrow \sqrt {x - 1} = 7\\
\Leftrightarrow x - 1 = 49\\
\Leftrightarrow x = 50
\)
Thử lại $x=50$ là nghiệm
2b
\(\left\{{}\begin{matrix}\sqrt{3}x-2\sqrt{2}y=7\\\sqrt{2}x+3\sqrt{3}y=-2\sqrt{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{6}x-4y=7\sqrt{2}\\\sqrt{6}x+9y=-6\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-13y=13\sqrt{2}\\\sqrt{3}x-2\sqrt{2}y=7\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=-\sqrt{2}\\x=\sqrt{3}\end{matrix}\right.\)
2 a)
\(\left\{{}\begin{matrix}2x-y=3\\3x+y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=10\\2x-7=3\end{matrix}\right.\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Ai phát hiện sai đề thì sửa và làm giúp mk hộ với, cảm ơn :) (chỉ cần làm tóm tắt thôi)
Câu 1 chuyên phan bội châu
câu c hà nội
câu g khoa học tự nhiên
câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ
câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)
Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !
Câu c quen thuộc, chém trước:
Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)
Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)
Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)
\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)
Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)
\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)
Done.
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1
?Amanda?, Phạm Lan Hương, Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Nguyễn Ngọc Lộc , @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @Trần Thanh Phương
giúp e với ạ! Cần trước 5h chiều nay! Cảm ơn mn nhiều!
Tranh thủ làm 1, 2 bài rồi ăn cơm:
1/ Đặt \(m=n-2008>0\)
\(\Rightarrow2^{2008}\left(369+2^m\right)\) là số chính phương
\(\Rightarrow369+2^m\) là số chính phương
m lẻ thì số trên chia 3 dư 2 nên ko là số chính phương
\(\Rightarrow m=2k\Rightarrow369=x^2-\left(2^k\right)^2=\left(x-2^k\right)\left(x+2^k\right)\)
b/
\(2\left(a^2+b^2\right)\left(a+b-2\right)=a^4+b^4\) \(\left(a+b>2\right)\)
\(\Rightarrow2\left(a^2+b^2\right)\left(a+b-2\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)
\(\Rightarrow a^2+b^2\le4\left(a+b-2\right)\)
\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2\le0\Rightarrow a=b=2\)
\(\Rightarrow x=y=4\)