\(x^4-2mx^2-x+m^2-m=0\)(1) có 4 nghiệm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 8 2019

Cái đầu tiên lần lượt ghép nhóm 3 lại là được mà, tưởng đến đó tự làm tiếp được chứ

\(=x^2\left(x^2-x-m\right)+x\left(x^2-x-m\right)-\left(m-1\right)\left(x^2-x-m\right)\)

Câu tiếp thì 3 cái đầu là hằng đẳng thức

\(=\left(x^2+2x\right)^2+m\left(x^2+2x\right)+2m\)

Đặt ẩn phụ đưa về bậc 2

//Pt bậc 4 để giải được thì chỉ có vài loại cơ bản: đối xứng, đặt ẩn phụ đưa về bậc 2, tách thành nhân tử của 2 pt bậc 2.

Câu 2 thì dễ rồi, nhìn hệ số đoán ngay được nó là dạng pt đặt ẩn phụ

Câu 1 thì khuyết bậc 3 nên gần như ko thể đặt ẩn phụ, vậy nó là dạng tách nhân tử \(\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)

Do khuyết bậc 3 nên \(a=-c\), thử với trường hợp đơn giản nhất:

\(\left(x^2-x+a\right)\left(x^2+x+b\right)\)

Nhân phá ra, đồng nhất hệ số với pt ban đầu là tìm được a;b dễ dàng

Sau khi biết được nhân tử rồi thì giả bộ tách như pro thôi, chứ tự nhiên thì ko thể tách suông được ra đâu, đau não lắm :(

30 tháng 8 2019

Nguyễn Thị Ngọc Thơ tại em thấy chị hay dùng acc phụ kia.. ít thấy chị dùng acc chính để cmt:D

28 tháng 5 2019

có ai chơi minecraft bedwar sever 3fmc.com ko chơi thì kb nha tui là Bluebood_VN

28 tháng 5 2019

pt \(x^2-2mx+m^2-2m=0\) có \(\Delta'=\left(-m\right)^2-\left(m^2-2m\right)=2m\)

Để pt có hai nghiệm phân biệt x1, x2 thì \(\Delta'>0\)\(\Leftrightarrow\)\(m>0\)

Ta có : \(\sqrt{x_1}+\sqrt{x_2}=3\)\(\Leftrightarrow\)\(x_1+x_2+2\sqrt{x_1x_2}=9\) (*) 

Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m^2-2m\end{cases}}\)

(*) \(\Leftrightarrow\)\(2m+2\sqrt{m^2-2m}=9\)

\(\Leftrightarrow\)\(4\left(m^2-2m\right)=\left(9-2m\right)^2\)

\(\Leftrightarrow\)\(4m^2-8m=81-36m+4m^2\)

\(\Leftrightarrow\)\(28m=81\)

\(\Leftrightarrow\)\(m=\frac{81}{28}\) ( tm ) 

... 

27 tháng 5 2019

Ta có \(\Delta'=1-m\ge0\)=>\(m\le1\)

Theo viet ta có

\(x_1+x_2=2\)

Vì x1 là nghiệm của phương trình

=> \(x_1^2=2x_1-m\)

Khi đó

\(P=\frac{m^3-m^2+4m}{2\left(x_1+x_2\right)+m^2-m}+m^2+1\)

 \(=\frac{m\left(m^2-m+4\right)}{m^2-m+4}+m^2+1=m^2+m+1=\left(m+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy \(MinP=\frac{3}{4}\)khi \(m=-\frac{1}{2}\)(thỏa mãn \(x\le1\))

AH
Akai Haruma
Giáo viên
29 tháng 3 2021

PT thì phải là $(m+1)x^2-2mx+2m=0$ nhé bạn chứ không có =0 thì không phải pt.

Lời giải:

TH1: $m=-1$ thì PT có nghiệm duy nhất $x=1$ $(*)$

----------------------------------------

TH2: $m\neq -1$ thì PT là PT bậc 2 ẩn $x$

$\Delta'=-m(m+2)$

PT có nghiệm khi $\Delta'=-m(m+2)\geq 0\Leftrightarrow -2\leq m\leq 0$

PT vô nghiệm khi $\Delta'=-m(m+2)<0\Leftrightarrow m< -2$ hoặc $m>0$

PT có 2 nghiệm pb khi $\Delta=-m(m+2)>0\Leftrightarrow -2< m< 0$

Như vậy, kết hợp 2 TH ta có:

PT ban đầu có nghiệm khi $-2\leq m\leq 0$

PT ban đầu vô nghiệm khi $m<-2$ hoặc $m>0$

PT ban đầu có 2 nghiệm phân biệt khi $-2< m< 0$ và $m\neq -1$

23 tháng 8 2021

avt 5*

AH
Akai Haruma
Giáo viên
13 tháng 10 2018

Lời giải:

a) Đặt \(x^3=a\) thì pt trở thành:

\(a^2+2003a-2005=0\)

\(\Leftrightarrow (a+\frac{2003}{2})^2=2005+\frac{2003^2}{2^2}=\frac{4020029}{4}\)

\(\Rightarrow \left[\begin{matrix} a+\frac{2003}{2}=\sqrt{\frac{4020029}{4}}\\ a+\frac{2003}{2}=-\sqrt{\frac{4020029}{4}}\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} a=\sqrt{\frac{4020029}{4}}-\frac{2003}{2}\approx 1\\ a=-\sqrt{\frac{4020029}{4}}-\frac{2003}{2}\approx -2004\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=\sqrt[3]{a}\approx 1\\ x=\sqrt[3]{a}\approx \sqrt[3]{-2004}\end{matrix}\right.\)

b)

Đặt \(x^2=a(a\geq 0)\)

PT trở thành: \(\sqrt{2}a^2-2(\sqrt{2}+\sqrt{3})a+\sqrt{12}=0\)

\(\Delta'=(\sqrt{2}+\sqrt{3})^2-\sqrt{2}.\sqrt{12}=5\)

Theo công thức nghiệm của pt bậc 2 thì pt có 2 nghiệm:

\(\left\{\begin{matrix} a_1=\frac{(\sqrt{2}+\sqrt{3})+\sqrt{5}}{\sqrt{2}}\\ a_2=\frac{(\sqrt{2}+\sqrt{3})-\sqrt{5}}{\sqrt{2}}\end{matrix}\right.\)

Do đó \(x=\pm \sqrt{a}\in\left\{\pm \sqrt{\frac{\sqrt{2}+\sqrt{3}+\sqrt{5}}{\sqrt{2}}};\pm \sqrt{\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{\sqrt{2}}}\right\}\)

AH
Akai Haruma
Giáo viên
13 tháng 10 2018

Câu 2:

Đặt \(x^2=a\). PT ban đầu trở thành:

\(a^2+a+m=0(*)\)

\(\bullet \)Để pt ban đầu có 3 nghiệm pb thì $(*)$ phải có một nghiệm $a=0$ và một nghiệm $a>0$

Để $a=0$ là nghiệm của $(*)$ thì \(0^2+0+m=0\Leftrightarrow m=0\)

Khi đó: \((*)\Leftrightarrow a^2+a=0\). Ta thấy nghiệm còn lại là $a=-1< 0$ (vô lý)

Do đó không tồn tại $m$ để pt ban đầu có 3 nghiệm pb.

\(\bullet\) Để pt ban đầu có 4 nghiệm pb thì $(*)$ phải có 2 nghiệm dương phân biệt

Mà theo định lý Viete, nếu $(*)$ có 2 nghiệm pb $a_1,a_2$ thì:\(a_1+a_2=-1< 0\) nên 2 nghiệm không thể đồng thời cùng dương.

Vậy không tồn tại $m$ để pt ban đầu có 4 nghiệm phân biệt.

25 tháng 10 2020

1.

\(y=m-1=\left|-x^2+4x+5\right|\)

Phương trình đã cho có 4 nghiệm phân biệt khi đương thẳng \(y=m-1\) cắt đồ thị hàm số tại 4 điểm phân biệt

\(\Rightarrow0< m-1< 9\Rightarrow m\in\left(1;10\right)\)

NV
22 tháng 11 2019

Đặt \(-x^2+2x+1=t\)

Xét \(f\left(x\right)=-x^2+2x+1\) ta có:

\(a=-1< 0\) ; \(f\left(-\frac{b}{2a}\right)=f\left(1\right)=2\Rightarrow\) để \(f\left(x\right)=t\) có 2 nghiệm pb \(\Leftrightarrow t< 2\)

Phương trình ban đầu trở thành:

\(f\left(t\right)=-t^2+2t=m\) (1)

Để pt đã cho có 4 nghiệm pb \(\Leftrightarrow\left(1\right)\) có 2 nghiệm pb \(t< 2\)

Xét \(f\left(t\right)\) trên \(\left(-\infty;2\right)\)

\(a=-1< 0\) ; \(f\left(-\frac{b}{2a}\right)=f\left(1\right)=1\); \(f\left(2\right)=0\)

\(\Rightarrow\) Để (1) có 2 nghiệm \(t< 2\) \(\Leftrightarrow0\le m< 1\)