Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) pt (1) có 2 nghiệm dương phân biệt => \(\hept{\begin{cases}\Delta_1=1-4m>0\\m>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< \frac{1}{4}\\m>0\end{cases}}\Leftrightarrow0< m< \frac{1}{4}\)
pt (2) có 2 nghiệm dương phân biệt => \(\hept{\begin{cases}\Delta_2=1-4m>0\\\frac{1}{m}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< \frac{1}{4}\\m>0\end{cases}}\Leftrightarrow0< m< \frac{1}{4}\)
=> để 2 pt có 2 nghiệm dương phân biệt thì \(0< m< \frac{1}{4}\)
b) \(x_1x_2x_3+x_2x_3x_4+x_3x_4x_1+x_4x_1x_2=x_1x_2\left(x_3+x_4\right)+x_3x_4\left(x_1+x_2\right)=m.\frac{1}{m}+\frac{1}{m}.1=\frac{1}{m}+1>\frac{1}{\frac{1}{4}}+1=5\)
Bài 1 :
Theo định lý vi-et ta có:
{xy=a+bx+y=ab{xy=a+bx+y=ab (với x,y là nghiệm của phương trình)
Giả sử ab>xy Suy ra x+y>xy suy ra x(1-y)+y-1>-1 suy ra (x-1)(y-1)<1 suy ra x=1 hoặc y=1
Suy ra 1-ab+a+b=0(vì tổng các hệ số =0) suy ra a=(1+b)/(b-1) ( đến đoạn này là ok)
Giả sử xy>ab Suy ra a+b>ab suy ra a=1 hoặc b=1
Với a=1 suy ra điều kiện để pt có nghiêm nguyên là: b2−4(1+b)=k2⇒(b−2−k)(b−2+k)=8b2−4(1+b)=k2⇒(b−2−k)(b−2+k)=8 (đến đoạn này ok)
Trường hợp còn lại CM tương tự
Bài 2 :
Để phương trình có ít nhất một nghiệm thì:
Δ=(2p−1)2−4⋅3⋅(p2−6p+11)≥0
=−8p2+68p−131 (1)
Giải pt (1) ta được:
p=17±3√34