Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Dấu hiệu là điểm bài thi học kì của 100 học sinh lớp 7 của một trường Trung học Cơ Sở Hòa Bình. Số các dấu hiệu là 100
b) Bảng tần số
Giá trị (x) | 1 | 2 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | |
Tần số (n) | 2 | 1 | 2 | 4 | 6 | 8 | 9 | 10 | 13 | 11 | 8 | 8 | 4 | 6 | 3 | 2 | 3 | 1 | N=100 |
Nhận xét: Giá trị lớn nhất là 19, giá trị nhỏ nhất là 1; tần số lớn nhất là 13, tần số nhỏ nhất là 1.
15 câu hỏi hết thì sao tiến bộ được , tự làm đi nhé ,ko ai rảnh để làm cho b đâu
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
a,
giá trị (x) | 10 | 13 | 15 | 17 | |
tần số (n) | 3 | 4 | 7 | 6 | N=20 |
M0=15 (mốt của dấu hiệu là 15)
b,
X=10.3+13.4+15.7+17.6/20=192,1
a) Áp dụng định lý Pitago vào tam giác AHB, ta có:
=> AB2 = AH2 + BH2
=> BH2 = 152 - 122
BH2 = 32
=> BH = 9 cm
Áp dụng định lý Pitago vào tam giác AHC, ta có:
=> AC2 = AH2 + CH2
=> AC2 = 122 + 162
AC2 = 202
=> AC = 20 cm
BC = BH + HC
BC = 6 + 15
BC = 21 cm
b) Ta có:
AB2 + AC2 = 152 + 202 = 252 = 625
BC2 = 212 = 441
vì 625 khác 441 nên tam giác ABC không vuông