\(\wideha...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1.Cho hình bình hành ABCD,P là điểm bất kì trên AB.M,N làn lượt là trung điểm của AD,BC.Gọi các điểm đối xứng của P qua MN lần lượt là E,F.Chứng minh:a.E,F,C,D thẳng hàngb.EF có độ dài không đổi2.Cho tam giác ABC,vẽ D đối xứng với a qua B,E đối xứng với B qua C,F đối xứng với C qua A.G là giao điểm của trung tuyến AM của tam giác ABC với trung tuyến DN của tam giác DEF.I,K lần lượt là trung...
Đọc tiếp

1.Cho hình bình hành ABCD,P là điểm bất kì trên AB.M,N làn lượt là trung điểm của AD,BC.Gọi các điểm đối xứng của P qua MN lần lượt là E,F.Chứng minh:

a.E,F,C,D thẳng hàng

b.EF có độ dài không đổi

2.Cho tam giác ABC,vẽ D đối xứng với a qua B,E đối xứng với B qua C,F đối xứng với C qua A.G là giao điểm của trung tuyến AM của tam giác ABC với trung tuyến DN của tam giác DEF.I,K lần lượt là trung điểm của GA,GD.Chứng minh:
a.Tứ giác MNIK là hình bình hành

b.Trọng tâm tam giác ABC và tam giác DÈ trùng nhau

3.Tính độ dài đường trung tuyến AM của tam giác ABC biết góc A=120 độ;AB=6 cm;AC=8 cm

4.tam giác ABC,đường cao BH;CK cắt nhau tại E.Qua B kẻ Bx vuông góc với AB.Qua C kẻ Cy vuông góc với AC,Bx cắt Cy tại D

a.BDCE là hình gì?Vì sao?

b.Gọi M là trung điểm của ED.chứng minh E,M,D thẳng hàng

c.Tam giác ABC thỏa mãn điều kiện gì để A,E,M thẳng hàng

CÁC BẠN GIÚP MÌNH VỚI NHAA,MÌNH CẢM ƠN NHIỀU NHIỀU!!!

1
5 tháng 1 2017

Ui ,Khó thật!

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HDa , Chứng minh rằng ABMN là hình bình hành .b , Chứng minh rằng N là trực tâm của tam giác AMDc , Chứng minh rằng góc BMD = 90 độd , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường...
Đọc tiếp

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD

a , Chứng minh rằng ABMN là hình bình hành .

b , Chứng minh rằng N là trực tâm của tam giác AMD

c , Chứng minh rằng góc BMD = 90 độ

d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .

2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.

3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN

a , Chứng minh rằng tam giác ADM = tam giác DBN

b , Chứng minh rằng góc MBN = 60 độ

c , Chứng minh rằng tam giác BNM đều .

4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N

a , Chứng minh rằng tam giác MAN vuông cân

b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .

5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .

a , Chứng minh rằng MENF là hình thang

b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .

0
Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

9 tháng 4 2020

Xin lỗi bạn nha ! Vì lỗi nên mình không vẽ được hình cho bạn ,có j bạn tự vẽ nha !!! 

Bài giải 

a) AB là tiếp tuyến tại A của ( C) 

=> \(\widehat{BAF}=\widehat{AEF}\)

Xét \(\Delta ABF\)và \(\Delta EBA\)có : 

\(\hept{\begin{cases}\widehat{ABE}chung\\\widehat{BAF}=\widehat{BEA}\end{cases}\Rightarrow\Delta ABF}\infty\Delta EBA\left(g-g\right)\)

\(\Rightarrow\frac{AB}{BE}=\frac{BF}{AB}\Rightarrow AB^2=BE.BF\)

Xét \(\Delta ABC\) vuông tại A có đường cao AH . 

=> AB2 =BH . BC 

=> BH . BC = BE . BF ( =AB2 ) 

Xét \(\Delta BHF\)và \(\Delta BEC\)có : 

\(\frac{BH}{BE}=\frac{BF}{BC}\)

\(\widehat{CBE}\)chung 

=> \(\Delta BHF\infty\Delta BEC\left(c-g-c\right)\)

=> \(\widehat{BHF}=\widehat{BEC}\)

*) \(\widehat{BHF}+\widehat{FHC}=\widehat{BEC}+\widehat{FHC}\)

\(\Leftrightarrow\widehat{FEC}+\widehat{FHC}=\widehat{BHC}=180^O\)

=> EFHC là tứ giác nội tiếp ( có tổng 2 góc đối =180 o 

b) EFHC là tứ giác nội tiếp 

=> \(\widehat{EHC}=\widehat{EFC}\)( cùng chắn góc EC ) 

   \(\widehat{FEC}=\widehat{BHF}\)( c/ m cân A ) 

Mà \(\widehat{FEC}=\widehat{EFC}\)\(\Delta ECF\)cân ở C ) 

=> \(\widehat{EHC}=\widehat{BHF}\)

=> 90O \(-\widehat{EHC}=90^O-\widehat{BHF}\)

<=> \(\widehat{EHD}=\widehat{FHD}\)

=> HD là phân giác góc EHF

9 tháng 4 2020

Bạn giải câu c dùm mình được không?

Các bạn giúp mình với1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và...
Đọc tiếp

Các bạn giúp mình với
1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?

2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?

3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max

4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB lần lượt lấy 2 điểm M,N sao cho chu vi AMN là 2a Tìm vị trí điểm M và N đê diện tích tam giác AMN đạt max

5. Cho tam giác ABC có diện tích ko đổi Các đường phân giác trong cua các góc A,B,C lần lượt cắt các cạnh BC,AC,AB tại D,E,F. Xác định hình dạng tam giác ABC đê diện tích tam giác DÈF đạt max

6. Cho tam giác ABC, M ở trong tam giác các đường thẳng AM,BM,CM lần lượt cắt cách cạnh BC,AC,AB tại D,E,F. Xác định vị trí của điểm M để diện tích tam giác DEF đạt max

1
29 tháng 9 2016

khó quá đi à